MHB How Do You Calculate Sample Size for a T-Test with a 95% Confidence Interval?

  • Thread starter Thread starter markosheehan
  • Start date Start date
  • Tags Tags
    Test
AI Thread Summary
To calculate the sample size for a t-test with a 95% confidence interval, the formula used is x - u / (s/√n), where x is the sample mean (101.6), u is the population mean (100), s is the standard deviation (15), and n is the sample size. The discussion emphasizes focusing on the lower bound of the confidence interval, using the t-value corresponding to a 95% confidence level, typically 1.96 for n > 30. By rearranging the formula, the sample size can be determined by solving the equation 100 = 101.6 - 1.96 * (15/√n). Ultimately, the correct sample size needed to achieve the desired confidence interval is 338.
markosheehan
Messages
133
Reaction score
0
View attachment 7546

i am stuck on question 12

I am trying to use the hypothesis testing 1 sample t test formula .

the right answer is 338 but I can not get this
 

Attachments

  • WIN_20171118_10_55_32_Pro.jpg
    WIN_20171118_10_55_32_Pro.jpg
    92.3 KB · Views: 128
Mathematics news on Phys.org
I think this question has to do with the lower bound of the confidence interval since the mean of the sample is above 100. What is the formula you've been given to calculate a confidence interval of a mean? What values do we already have that fit into that equation?
 
So the forumula is x-u/(s/✓n). Where X is the value 101.6

U is the mean which is 100,s is the standard deviation which is 15 , n is the size of the sample which is what we are looking for. What I'm not sure is what I am supposed to equal this to. I know it's something to do with the 5% level of confidence, but that forumula gives its answer as a z value.
 
markosheehan said:
So the forumula is x-u/(s/✓n). Where X is the value 101.6

U is the mean which is 100,s is the standard deviation which is 15 , n is the size of the sample which is what we are looking for. What I'm not sure is what I am supposed to equal this to. I know it's something to do with the 5% level of confidence, but that forumula gives its answer as a z value.

On the right track!

So here's our confidence interval formula: $$\overline{x} \pm t^{*} \frac{s}{\sqrt{n}}$$.

Like you wrote, we just care about the lower bound so we can ignore the upper bound for now. The $t$ here corresponds to the 95% confidence level. Usually we say when $n>30$ we can use the normal distribution which would make $t=1.96$. If we plug that in we get:

$$100 = 101.6 -1.96 \frac{15}{\sqrt{n}}$$

Now we want to solve for $n$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top