How Do You Calculate Speed and Acceleration in Curvilinear Motion?

In summary, Chris attempted to solve the homework equation a(tan)ds = v dv, but was unable to do so. He integrated v=0.025s^2, s = 10 to get 2.5 m/s, but then mistakenly added the initial velocity. After understanding that he needed to integrate v_f-v_i, he got 4.58 m/s.
  • #1
chrsr34
27
0
Hi guys,Im Chris, I am new here. I am in Dynamics doing curvilinear motion.

Homework Statement



A truck travels at a speed of 4m/s along a circular road with radius if 50m. For a short distance, from s=0, its speed is then increased by a(tan) = (0.05s) m/s, where s is in meters. Determine the speed and acceleration magnitude at s=10. (i can find the a-magnitude easily after i find v, i just can't find v)

Homework Equations


acceleration and velocity equations
a(tan)ds = v dv

The Attempt at a Solution


Ive tried to attempt this using integration with respect to s, but this does not yield the correct answer, so its the incorrect procedure. The answer is 4.58 m/s.
I have never seen or dealt with integration with respect to displacement, therefore i don't know how to approach this problem. The book says nothing on figuring this out. Any help is appreciated, Thanks!
Chris
 
Last edited:
Physics news on Phys.org
  • #2
Hello, and welcome to PF!

Integration is indeed the way to go, so you must have made an error there. Let's see what you did, and then we can help you.
 
  • #3
Thank you! well i integrated and got v = 0.025s^2, s = 10. This yeilds 2.5 m/s. Adding this to the initial 4 m/s yields 6.5 m/s. This is incorrect. the answer is 4.58 m/s. So, where is my error? I am quite dumbfounded...
 
  • #4
Im starting to think this should be in advanced physics as it requires perhaps some difficult manipulation? I am in calc 3 and have no idea what to do...
To the Moderator, please move if you feel fit
 
Last edited:
  • #5
chrsr34 said:
Thank you! well i integrated and got v = 0.025s^2, s = 10. This yeilds 2.5 m/s. Adding this to the initial 4 m/s yields 6.5 m/s. This is incorrect. the answer is 4.58 m/s. So, where is my error? I am quite dumbfounded...

You can not add the initial velocity. From the integration you have

[tex]\int_4^{v_f} v\,d\,v=\int_0^{s_f}\frac{s}{20}d\,s\Rightarrow \frac{1}{2}\,v^2\Big|_4^{v_f}=\frac{1}{40}\,s^2_f \Rightarrow u_f^2-4^2=\frac{1}{20}\,s_f^2[/tex]

Plug your values in the above equation to find the answer.
 
  • #6
wow,i did not even think about integrating the v from 4-vf. Thank you so much. But just to be clear, you say that i can't add the initial velocity. The final answer of that integration is .58m/s so that would conclude that I do have to add the initial 4 m/s to get 4.58m/s. Isnt this correct?
 
Last edited:
  • #7
The final answer of that integration is .58m/s

Which integration? :confused:
If the initial velocity is [itex]v_i[/itex] then the final velocity is [itex]v_[/itex] then

[tex]v_f^2=v_i^2+\frac{1}{20}\,s^2\Rightarrow v_f=\sqrt{v_i^2+\frac{1}{20}\,s^2}[/tex]

The final velocity is not proportional to the initial velocity. That's why you can not add it.

Is it clear? :smile:
 
  • #8
Hmm, now I am even more confused. Plugging s and vi into that equation gives me 6.4 m/s = vf. I don't understand, if the initial vi is 4m/s, and then accelerates for 10m to a new vf, wouldn't you be adding vi + delta v to get final velocity?

[tex]u_f^2-4^2=\frac{1}{20}\,s_f^2[/tex] solving for uf yields .58
adding 4+.58 yeilds the correct answer
 
Last edited:
  • #9
chrsr34 said:
Hmm, now I am even more confused. Plugging s and vi into that equation gives me 6.4 m/s = vf. I don't understand, if the initial vi is 4m/s, and then accelerates for 10m to a new vf, wouldn't you be adding vi + delta v to get final velocity?

How did you find [itex]v_f=6.4\,m/sec[/itex]? For [itex]s=10\,m,\,v_i=4\,m/sec[/itex] you get

[tex]v_f=\sqrt{16+\frac{100}{20}}\Rightarrow v_f=\sqrt{21}\Rightarrow v_f=4.58\,m/sec[/tex]

The definition of the acceleration is [itex]a=\frac{d\,v}{d\,t}\Rightarrow d\,v=a\,d\,t\Rightarrow v_f-v_i=\int_0^{t_f}a\,d\,t[/itex]. If you call [itex]\Delta v=\int_0^{t_f}a\,d\,t[/itex] then of course you can write [itex]v_f=v_i+\Delta v[/itex].
 
  • #10
oh yes, your right, i was squaring the 100/20 by accident. I still don't fully understand the entire process but ill try and figure it out. Thanks again Rainbow Child.
 

FAQ: How Do You Calculate Speed and Acceleration in Curvilinear Motion?

What is curvilinear motion?

Curvilinear motion is a type of motion in which an object follows a curved path instead of a straight line. It can occur in any direction and at varying speeds.

How is curvilinear motion different from linear motion?

Curvilinear motion involves a change in direction, while linear motion involves movement in a straight line. Additionally, linear motion is characterized by constant velocity, while curvilinear motion often involves changing velocity.

What factors affect the speed of curvilinear motion?

The speed of curvilinear motion can be affected by various factors, such as the radius of the curve, the angle of the curve, and the acceleration of the object.

How is centripetal force related to curvilinear motion?

Centripetal force is the force that keeps an object moving in a circular path. In curvilinear motion, this force is necessary to maintain the object's curved path.

What are some real-life examples of curvilinear motion?

Some common examples of curvilinear motion include a car turning on a curved road, a rollercoaster moving along its track, and a planet orbiting around the sun.

Similar threads

Replies
11
Views
7K
Replies
1
Views
3K
Replies
10
Views
2K
Replies
1
Views
2K
Replies
5
Views
2K
Replies
6
Views
2K
Back
Top