- #1
pkpiotr517
- 10
- 0
1. The inside diameters of the larger portions of the horizontal pipe are 2.90 cm. Water flows to the right at a rate of 2.00 10-4 m3/s. Determine the inside diameter of the constriction.
2. P=P0 + pgh
a1v1=a2v2
P + pgh + 1/2pv^2 = constant
3. Since the volumetric flow rate is constant within the big pipe, I used a1v1 = a2v2 in order to solve for the second area of the narrowing pipe. so i have A2= a1v1/v2. Now I don't know exactly where to go from there... I know i could use the formula P+pgh + 1/2pv^2 in order to find the differences in height in the two protruding tubes and solve for the area with that, but I can't seem to link it together, or figure out if I am making any sense...
2. P=P0 + pgh
a1v1=a2v2
P + pgh + 1/2pv^2 = constant
3. Since the volumetric flow rate is constant within the big pipe, I used a1v1 = a2v2 in order to solve for the second area of the narrowing pipe. so i have A2= a1v1/v2. Now I don't know exactly where to go from there... I know i could use the formula P+pgh + 1/2pv^2 in order to find the differences in height in the two protruding tubes and solve for the area with that, but I can't seem to link it together, or figure out if I am making any sense...