- #1
mahadasgar
- 2
- 0
Homework Statement
Three vectors, A, B and C each have a magnitude of 50 units. Their
directions relative to the positive direction of the x-axis are 20°, 160° and
270°, respectively. Calculate the magnitude and direction of each of the
following vectors.
1.) A + B + C
2.) A-B+C
3.) 2(A+C)
Homework Equations
a^2 + B^2=C^2
The Attempt at a Solution
1.)
Vector A
Ax=50cos20=46.985
Ay=50sin20=17.101
Vector B
-Bx=50cos20=-46.985
By=50sin20=17.101
Vector C
Cx=0
Cy=-50
Ax+Bx+Cx=46.985+(-46.985)+0=0
Ay+By+Cy=17.101+17.101+(-50)=-15.798
0^2 +(-15.798)^2=c^2
c=15.798
tan^-1= 0 degrees
2.
Ax-Bx+Cx=46.985+(--(makes positive) 46.985) + 0=93.97
Ay-By+Cy=17.101+(-17.101)+(-50)=-50
(-50)^2+(93.97)^2=106.444
tan^-1=-50/93.97=28.02 degrees below x axis
3.
2(Ax+Cx)=2(46.985+0)=93.97
2(Ay+Cy)=2(17.101+(-50))=-65.798
(-65.798)^2+(93.97)^2=c^2
C=114.72
tan^-1(-65.798/93.97)
=35.0 degrees below x axis
Did I do this correct?