How Do You Compute Killing Vectors for a Given Metric?

  • Thread starter Thread starter LCSphysicist
  • Start date Start date
  • Tags Tags
    Metric Vectors
AI Thread Summary
To compute the Killing vectors for the metric x²dx² + xdy², the Killing equation must be applied: Lχg_ab = g_ad∂_bX^d + g_bd∂_aX^d + X^e∂_e g_ab = 0. The process begins by calculating the partial derivatives of the metric components, which are essential for substituting into the Killing equation. This involves evaluating derivatives like ∂_0 g_{00} = 2x and ∂_1 g_{11} = 2xy, among others. After substituting these derivatives into the Killing equation, one can solve for the components of the Killing vectors, X^0 and X^1. Understanding how to manipulate the indices and derivatives is crucial for starting the computations effectively.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
.
Relevant Equations
.
I want to find all the killing vectors of the metric ##x²dx² + xdy²##. We could guess somethings by intuition and check it, but i decided to use the equation itself. Unfortunatelly, i realized that i am not sure how to manipulate the equation

$$L_{\chi}g_{ab} = g_{ad}\partial_{b} X^{d}+g_{bd}\partial_{a} X^{d}+ X^{e}\partial_{e} g_{ab} =^{?} 0$$

When i wrote this equation, i was not sure how the index should work here, so i guessed that we need to check it for all possible combinations of ab. ##(a,b) = [(0,0),(0,1),(1,0),(1,1)]##$. So, seeing this way, we need to find ##\vec X = (X^{0},X^{1})##? THe answer is something in partial derivatives. How would i got that just with the equation? I would appreciate if you give a tip of how to really start the computations, because as you can see, i am stuck right at the start.
 
Physics news on Phys.org
The Killing equation for a metric $g_{ab}$ is given by$$L_{\chi}g_{ab} = g_{ad}\partial_{b} X^{d}+g_{bd}\partial_{a} X^{d}+ X^{e}\partial_{e} g_{ab} = 0.$$In this case, you are trying to find the Killing vectors $\vec{X}=(X^0,X^1)$ for the metric $$g_{ab}=\begin{bmatrix}x^2 & 0 \\ 0 & xy^2\end{bmatrix}.$$ To solve for $\vec{X}$, begin by computing the partial derivatives of the metric components with respect to each coordinate:$$\partial_0 g_{00} = \partial_0 (x^2) = 2x,$$$$\partial_1 g_{00} = \partial_1 (x^2) = 0,$$$$\partial_0 g_{01} = \partial_0 (0)=0,$$$$\partial_1 g_{01} = \partial_1 (0) = 0,$$$$\partial_0 g_{11} = \partial_0 (xy^2) = y^2,$$$$\partial_1 g_{11} = \partial_1 (xy^2) = 2xy.$$Now, substitute these partial derivatives into the Killing equation and solve for $\vec{X}$:\begin{align*}L_\chi g_{ab} &= g_{ad}\partial_b X^d + g_{bd}\partial_a X^d + X^e \partial_e g_{ab} \\&= \begin{bmatrix}x^2 & 0 \\ 0 & xy^2\end{bmatrix}\begin{bmatrix}\partial_0 X^0 & \partial_1 X^0 \\ \partial_0 X^1 & \partial_1 X^1\end{bmatrix} + \begin{bmatrix}x^2 & 0 \\ 0 & xy^2\end{bmatrix}\begin{bmatrix}\partial_0 X^0 & \partial_1 X^0 \\ \partial
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top