- #1
LCSphysicist
- 646
- 162
- Homework Statement
- .
- Relevant Equations
- .
I want to find all the killing vectors of the metric ##x²dx² + xdy²##. We could guess somethings by intuition and check it, but i decided to use the equation itself. Unfortunatelly, i realized that i am not sure how to manipulate the equation
$$L_{\chi}g_{ab} = g_{ad}\partial_{b} X^{d}+g_{bd}\partial_{a} X^{d}+ X^{e}\partial_{e} g_{ab} =^{?} 0$$
When i wrote this equation, i was not sure how the index should work here, so i guessed that we need to check it for all possible combinations of ab. ##(a,b) = [(0,0),(0,1),(1,0),(1,1)]##$. So, seeing this way, we need to find ##\vec X = (X^{0},X^{1})##? THe answer is something in partial derivatives. How would i got that just with the equation? I would appreciate if you give a tip of how to really start the computations, because as you can see, i am stuck right at the start.
$$L_{\chi}g_{ab} = g_{ad}\partial_{b} X^{d}+g_{bd}\partial_{a} X^{d}+ X^{e}\partial_{e} g_{ab} =^{?} 0$$
When i wrote this equation, i was not sure how the index should work here, so i guessed that we need to check it for all possible combinations of ab. ##(a,b) = [(0,0),(0,1),(1,0),(1,1)]##$. So, seeing this way, we need to find ##\vec X = (X^{0},X^{1})##? THe answer is something in partial derivatives. How would i got that just with the equation? I would appreciate if you give a tip of how to really start the computations, because as you can see, i am stuck right at the start.