I How Do You Compute the Density Matrix of a Bipartite State?

Rayan
Messages
17
Reaction score
1
TL;DR Summary
What is the easiest way to compute a density matrix of bipartite states?
If we for example have such a bipartite state:

$$ | \phi > = \frac{1}{2} [ |0>|0> + |1>|0> + |0>|1> + |1>|1> ] $$

What is the easiest way to compute a density matrix of bipartite states? Should I just compute it as it is? i.e:

$$ \rho = | \phi > < \phi | $$

Or should I convert to matrix form first? Any advice appreciated!

I tried to convert it to matrix form and got the following:

$$ | \phi > = \frac{1}{2}
\begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix} $$

and

$$ < \phi | = \frac{1}{2}
\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}
$$

But then I don't think it is possible to compute the following outer product?

$$ \rho = \frac{1}{4}
\begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix} \cdot
\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}
$$
 
Last edited:
Physics news on Phys.org
Things went wonky when you calculated the dual vector (bra) of the state. How did the complex conjugate transpose turn a column vector into a matrix?
 
Rayan said:
Should I just compute it as it is? i.e:
$$ \rho = | \phi > < \phi | $$
Yes.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top