- #1
Fermat1
- 187
- 0
Let $m$ be an integer ${\geq}3$ and $f(x,y,z)=y^m(x+y^3)-z^3$ be in $k[x,y,z]$. Find the singular points of $f$ and find a minimal primary decomposition of the jacobian of $f$.
I find the set of singular points of $f$ to be {$(x,0,0): {x\in k} $} and the jacobian to be $\langle y^m,mxy^{m-1},-3z^2\rangle$. How do I find a minimal primary decomposition?
Thanks
I find the set of singular points of $f$ to be {$(x,0,0): {x\in k} $} and the jacobian to be $\langle y^m,mxy^{m-1},-3z^2\rangle$. How do I find a minimal primary decomposition?
Thanks