- #1
latitude
- 56
- 0
Homework Statement
Derive the compton equation.
Homework Equations
[tex]\lambda[/tex]` - [tex]\lambda[/tex] = h/ mc (1 - cos[tex]\theta[/tex])
E = hf = hc/[tex]\lambda[/tex]
The Attempt at a Solution
Okay, I'm sorry this is so long, I'll try and make it as concise as it is possible for a whole blather of random crap to be :]
Conservation of momentum components:
h/[tex]\lambda[/tex] = h/[tex]\lambda[/tex]`(cos[tex]\theta[/tex]) + Pe(cos[tex]\psi[/tex])
0 = h/[tex]\lambda[/tex]`(sin[tex]\theta[/tex]) - Pe(sin[tex]\psi[/tex])
After some combining, squaring, and the like (getting rid of [tex]\psi[/tex]):
Pe2 = (h/[tex]\lambda[/tex])2 - (h/[tex]\lambda[/tex]`)2cos2[tex]\theta[/tex] + (h/[tex]\lambda[/tex]`)2sin2[tex]\theta[/tex] - (h/[tex]\lambda[/tex])(h/[tex]\lambda[/tex]`)cos[tex]\theta[/tex]
E2 = p2c2 + ER2
So
P2 = (E2 - ER2)/c2
So I plug that into my momentum (I'm not going to write the righthand side of the equation while i show what I did w/ that)
(E2 - ER2)/c2 = ...
((hc/[tex]\lambda[/tex])2 - (mc2)2)/c2 = .
I tried to get rid of the denominator 'c'...
(h/[tex]\lambda[/tex])2 - m2c2 = ...
(m2c2[tex]\lambda[/tex])/h = [tex]\lambda[/tex]/[tex]\lambda[/tex]` - h/[tex]\lambda[/tex]`cos[tex]\theta[/tex]
After some more fiddling I get to this:
[tex]\lambda[/tex]` = h/m2c2 - (h/[tex]\lambda[/tex])(h/m2c2)cos[tex]\theta[/tex]
It's kind of close but not really... I can write out all the steps I made if that is necessary, but I'm kind of hoping I made one nice, simple-to-fix error that is glaringly obvious to the more experienced :)
Thank you :)