MHB How Do You Determine If a Point Lies on a Circle?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Circle Radius
AI Thread Summary
To determine if a point lies on a circle, the equation of the circle centered at (0, 0) with a radius of 1 is x^2 + y^2 = 1. The point (3/5, 4/5) is tested by substituting its coordinates into the equation, resulting in (3/5)^2 + (4/5)^2 = 1. The calculations confirm that 9/25 + 16/25 equals 25/25, which simplifies to 1, indicating that the point does indeed lie on the circle. The discussion emphasizes the importance of correctly applying the equation without assuming the conclusion. Understanding these steps is crucial for verifying points on a circle.
mathdad
Messages
1,280
Reaction score
0
1. Sketch the circle of radius 1 centered at (0, 0).

(A) Write the equation of this circle.

I must use x^2 + y^2 = r^2.

The radius is 1. This means r = 1.

The equation is x^2 + y^2 = 1. Correct?

B. Does the point (3/5, 4/5) lie on this circle?

(3/5)^2 + (4/5)^2 = 1^2

(9/25) + (16/25) = 1

(9 + 16)/25 = 1

25/25 = 1

1 = 1

I say yes. Right?
 
Mathematics news on Phys.org
RTCNTC said:
1. Sketch the circle of radius 1 centered at (0, 0).

(A) Write the equation of this circle.

I must use x^2 + y^2 = r^2.

The radius is 1. This means r = 1.

The equation is x^2 + y^2 = 1. Correct?

Correct.

RTCNTC said:
B. Does the point (3/5, 4/5) lie on this circle?

(3/5)^2 + (4/5)^2 = 1^2

(9/25) + (16/25) = 1

(9 + 16)/25 = 1

25/25 = 1

1 = 1

I say yes. Right?

Right. Good work!
 
Good to know that I am right.
 
RTCNTC said:
B. Does the point (3/5, 4/5) lie on this circle?

(3/5)^2 + (4/5)^2 = 1^2

(9/25) + (16/25) = 1

(9 + 16)/25 = 1

25/25 = 1

1 = 1

In the first and following lines above, you are assuming what you are trying to show. The above can be properly written as

$$\left(\frac35\right)^2+\left(\frac45\right)^2=\frac{9}{25}+\frac{16}{25}=\frac{9+16}{25}=\frac{25}{25}=1$$

:)
 
greg1313 said:
In the first and following lines above, you are assuming what you are trying to show. The above can be properly written as

$$\left(\frac35\right)^2+\left(\frac45\right)^2=\frac{9}{25}+\frac{16}{25}=\frac{9+16}{25}=\frac{25}{25}=1$$

:)

Isn't that what I did?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
1
Views
1K
Replies
8
Views
1K
Replies
59
Views
2K
Replies
4
Views
1K
Replies
2
Views
3K
Replies
8
Views
2K
Replies
2
Views
1K
Back
Top