- #1
Pengwuino
Gold Member
- 5,123
- 20
Ok so I have a T vector and N vector...
[tex]\begin{array}{l}
T(1) = \langle \frac{2}{3},\frac{{ - 1}}{3},\frac{2}{3}\rangle \\
N(1) = \langle \frac{2}{3},\frac{2}{3},0\rangle \\
B(1) = T(1) \times N(1) \\
B(1) = \langle \frac{{ - 1}}{3},\frac{2}{3},\frac{2}{3}\rangle \\
\end{array}[/tex]
I also have the coordinate of the original equation at 1...[tex]r(1) = \langle 2,1,0\rangle [/tex]
This left me with the standard equation of the osculating plane...
[tex]- x + 2y + 2z = 0[/tex]
Now I need to find the coordinates of hte center of this circle where t=1. How am i suppose to do this?
[tex]\begin{array}{l}
T(1) = \langle \frac{2}{3},\frac{{ - 1}}{3},\frac{2}{3}\rangle \\
N(1) = \langle \frac{2}{3},\frac{2}{3},0\rangle \\
B(1) = T(1) \times N(1) \\
B(1) = \langle \frac{{ - 1}}{3},\frac{2}{3},\frac{2}{3}\rangle \\
\end{array}[/tex]
I also have the coordinate of the original equation at 1...[tex]r(1) = \langle 2,1,0\rangle [/tex]
This left me with the standard equation of the osculating plane...
[tex]- x + 2y + 2z = 0[/tex]
Now I need to find the coordinates of hte center of this circle where t=1. How am i suppose to do this?
Last edited: