How Do You Differentiate \( \arctan(\sqrt{3x}) \)?

  • MHB
  • Thread starter karush
  • Start date
In summary, to find the derivative of $\tan^{-1}\sqrt{3x}$, we can use implicit differentiation to get $\dfrac{dy}{dx} = \dfrac{3}{2\sqrt{3x}(1+3x)}$.
  • #1
karush
Gold Member
MHB
3,269
5
$\tiny{242.7x.19}$

find y'
\begin{align*}\displaystyle
y&=\tan^{-1}\sqrt{3x}
\end{align*}
$\textsf{thus would be.}$
\begin{align*}
\displaystyle
y'&=\frac{1}{(\sqrt{3x})^2 + 1} \cdot \frac{d}{dx} \sqrt{3x}
\end{align*}

$\textit{tried to follow an example but not sure about this??}$
 
Physics news on Phys.org
  • #2
That's correct.
 
  • #3
karush said:
$\tiny{242.7x.19}$

find y'
\begin{align*}\displaystyle
y&=\tan^{-1}\sqrt{3x}
\end{align*}
$\textsf{thus would be.}$
\begin{align*}
\displaystyle
y'&=\frac{1}{(\sqrt{3x})^2 + 1} \cdot \frac{d}{dx} \sqrt{3x}
\end{align*}

$\textit{tried to follow an example but not sure about this??}$

I would be more inclined to use implicit differentiation in this case...

$\displaystyle \begin{align*} y &= \arctan{ \left( \sqrt{3\,x} \right) } \\ \tan{ \left( y \right) } &= \sqrt{3\,x} \\ \frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \tan{(y)} \right] &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \left( 3\,x \right) ^{\frac{1}{2}} \right] \\ \frac{\mathrm{d}}{\mathrm{d}y}\,\left[ \tan{(y)} \right] \,\frac{\mathrm{d}y}{\mathrm{d}x} &= 3 \cdot \frac{1}{2}\,\left( 3\,x \right) ^{-\frac{1}{2}} \\ \sec^2{(y)}\,\frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3}{2\,\sqrt{3\,x}} \\ \left[ 1 + \tan^2{(y)} \right] \,\frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3}{2\,\sqrt{3\,x}} \\ \left[ 1 + \left( \sqrt{3\,x} \right) ^2 \right] \,\frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3}{2\,\sqrt{3\,x}} \\ \left( 1 + 3\,x \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3}{2\,\sqrt{3\,x}} \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3}{2\,\sqrt{3\,x} \,\left( 1 + 3\,x \right) } \end{align*}$
 

FAQ: How Do You Differentiate \( \arctan(\sqrt{3x}) \)?

What does the given function represent?

The given function, 242.7x.19 d/dx arctan(sqrt(3x)), represents the derivative of the arctangent of the square root of 3x.

How do I find the derivative of this function?

To find the derivative of this function, you can use the chain rule, which states that the derivative of f(g(x)) is f'(g(x)) * g'(x). In this case, f(x) = arctan(x) and g(x) = sqrt(3x).

Can I simplify this function?

Yes, this function can be simplified using algebraic manipulation. First, you can rewrite 242.7x.19 as 2.427x. Next, you can use the power rule to rewrite sqrt(3x) as (3x)^1/2. Then, you can use the product rule to find the derivative of 2.427x * arctan((3x)^1/2). Finally, you can simplify the resulting expression to get the final derivative of 2.427 * (1 + 1/(3x)) / (2 * sqrt(3x) * (1 + 3x)).

How can I use this function in real-world applications?

This function can be used in various real-world applications, such as calculating the slope of a tangent line on a graph or finding the rate of change in a physical system.

Are there any limitations to this function?

Yes, there are a few limitations to this function. First, it is only applicable to real numbers. Additionally, the function may not be defined at certain points, such as when the denominator is equal to 0. It is important to consider these limitations when using this function in calculations.

Similar threads

Replies
2
Views
2K
Replies
16
Views
3K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
4
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
Back
Top