- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{evaluate}$
\begin{align}
\displaystyle
{I}&={\int{\frac{x+2}{x^2+1}dx}}\\
&=\int{\frac{x}{x^{2}{+1}}dx{\ +\ 2}\int{\frac{1}{x^{2}{+1}}}}{\ }dx\\
u&=x^{2}+1 \therefore \frac{1}{2x}du=dx\\
x&=\sqrt{u-1}\\
\end{align}
...?
$\textit{calculator answer.?}$
$\dfrac{\ln\left(x^2+1\right)}{2}
+2\arctan\left(x\right)+C$
\begin{align}
\displaystyle
{I}&={\int{\frac{x+2}{x^2+1}dx}}\\
&=\int{\frac{x}{x^{2}{+1}}dx{\ +\ 2}\int{\frac{1}{x^{2}{+1}}}}{\ }dx\\
u&=x^{2}+1 \therefore \frac{1}{2x}du=dx\\
x&=\sqrt{u-1}\\
\end{align}
...?
$\textit{calculator answer.?}$
$\dfrac{\ln\left(x^2+1\right)}{2}
+2\arctan\left(x\right)+C$
Last edited: