- #1
Leo Liu
- 353
- 156
- Homework Statement
- $$\lim_{x\to 0^+}(1-\cos (\sqrt x))^{\sin(x)}$$
- Relevant Equations
- .
I tried taking e^ln but to no avail. Please help! Thanks.
My attempt:
$$\lim_{x\to 0^+}(1-\cos (\sqrt x))^{\sin(x)}$$
$$\lim_{x\to 0^+}e^{\ln (1-\cos\sqrt x)^{\sin x}}$$
$$\lim_{x\to 0^+}e^{{\sin x}\ln (1-\cos\sqrt x)}$$
$$\lim_{x\to 0^+}\exp(\frac{\ln (1-\cos\sqrt x)}{1/\sin x})$$
If I apply Lhospital's rule to this limit, the result will be quite complicated and will remain in intermediate form. I also reached wolfram alpha for help, yet the step by step solution is terse.
My attempt:
$$\lim_{x\to 0^+}(1-\cos (\sqrt x))^{\sin(x)}$$
$$\lim_{x\to 0^+}e^{\ln (1-\cos\sqrt x)^{\sin x}}$$
$$\lim_{x\to 0^+}e^{{\sin x}\ln (1-\cos\sqrt x)}$$
$$\lim_{x\to 0^+}\exp(\frac{\ln (1-\cos\sqrt x)}{1/\sin x})$$
If I apply Lhospital's rule to this limit, the result will be quite complicated and will remain in intermediate form. I also reached wolfram alpha for help, yet the step by step solution is terse.