- #1
karush
Gold Member
MHB
- 3,269
- 5
W8.3.6 evaluate
$$\int {x}^{2}\sqrt{1-{x}^{2 }} \ dx
= \arcsin\left({x}\right)/8—\sin\left({4\arcsin\left({x}\right)}\right)/32 + C $$
This is from an exercise on trig substitutions so
$$x=\sin\left({x}\right)
\text{ so }
\int\sin^2 \left({x}\right)\sqrt{1-\sin^2 \left({x}\right)}\ dx
\implies \int\sin^2 \left({x}\right) \cos\left({x}\right) \ dx
$$
No example to follow on this so seeing if this is a good start
$$\int {x}^{2}\sqrt{1-{x}^{2 }} \ dx
= \arcsin\left({x}\right)/8—\sin\left({4\arcsin\left({x}\right)}\right)/32 + C $$
This is from an exercise on trig substitutions so
$$x=\sin\left({x}\right)
\text{ so }
\int\sin^2 \left({x}\right)\sqrt{1-\sin^2 \left({x}\right)}\ dx
\implies \int\sin^2 \left({x}\right) \cos\left({x}\right) \ dx
$$
No example to follow on this so seeing if this is a good start