- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{242 .10.09.8}\\$
$\textsf{Express the integrand as a sum of partial fractions and evaluate integral}$
\begin{align*}\displaystyle
I&=\int f \, dx = \int\frac{\sqrt{16+5x}}{x} \, dx
\end{align*}
\begin{align*}\displaystyle
f&=\frac{\sqrt{16+5x}}{x}
=\frac{\sqrt{16+5x}}{x}\cdot\frac{\sqrt{16+5x}}{\sqrt{16+5x}}\\
&=\frac{16+5x}{x\sqrt{16+5x}}=\frac{16}{x}+\frac{5x}{\sqrt{16+5x}}
\end{align*}
$\textsf{ok, I did something ??}\\$
$\textsf{Answer from}$ $ \textbf{W|A}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(4-\sqrt{5x+16})-4\log(\sqrt{5x-16}+4)+C$$
$\textsf{Express the integrand as a sum of partial fractions and evaluate integral}$
\begin{align*}\displaystyle
I&=\int f \, dx = \int\frac{\sqrt{16+5x}}{x} \, dx
\end{align*}
\begin{align*}\displaystyle
f&=\frac{\sqrt{16+5x}}{x}
=\frac{\sqrt{16+5x}}{x}\cdot\frac{\sqrt{16+5x}}{\sqrt{16+5x}}\\
&=\frac{16+5x}{x\sqrt{16+5x}}=\frac{16}{x}+\frac{5x}{\sqrt{16+5x}}
\end{align*}
$\textsf{ok, I did something ??}\\$
$\textsf{Answer from}$ $ \textbf{W|A}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(4-\sqrt{5x+16})-4\log(\sqrt{5x-16}+4)+C$$
Last edited: