How Do You Express and Evaluate This Integral Using Partial Fractions?

In summary: But, the use of the absolute value is missing. Without the absolute value, a different constant is used.So, the use of an absolute value is missing.
  • #1
karush
Gold Member
MHB
3,269
5
$\tiny{242 .10.09.8}\\$
$\textsf{Express the integrand as a sum of partial fractions and evaluate integral}$
\begin{align*}\displaystyle
I&=\int f \, dx = \int\frac{\sqrt{16+5x}}{x} \, dx
\end{align*}
\begin{align*}\displaystyle
f&=\frac{\sqrt{16+5x}}{x}
=\frac{\sqrt{16+5x}}{x}\cdot\frac{\sqrt{16+5x}}{\sqrt{16+5x}}\\
&=\frac{16+5x}{x\sqrt{16+5x}}=\frac{16}{x}+\frac{5x}{\sqrt{16+5x}}
\end{align*}
$\textsf{ok, I did something ??}\\$
$\textsf{Answer from}$ $ \textbf{W|A}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(4-\sqrt{5x+16})-4\log(\sqrt{5x-16}+4)+C$$
 
Last edited:
Physics news on Phys.org
  • #2
I think what I would do is use the substitution:

\(\displaystyle 16+5x=u^2\implies dx=\frac{2}{5}u\,du\)

And now the integral becomes:

\(\displaystyle I=2\int \frac{u^2}{u^2-16}\,du=2\int 1+\frac{2}{u-4}-\frac{2}{u+4}\,du\)
 
  • #3
$\tiny{7.6.16}$
$\textit{Then}\\$
$$\displaystyle I=2\left[\int 1 \,du +2\int\frac{1}{u-4}\,du
-2\int\frac{1}{u+4}\,du \right]+C$$
$\textit{Then Integrate}\\$
$$I=2u+4\ln(u-4)-4\ln(u+4)+C$$
$\textit{Then substute back in $u=\sqrt{16+5x}$}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(\sqrt{5x+16}-4)-4\log(\sqrt{5x-16}+4)+C$$
☕
 
Last edited:
  • #4
karush said:
$\tiny{7.6.16}$
$\textit{Then}\\$
$$\displaystyle I=2\left[\int 1 \,du +2\int\frac{1}{u-4}\,du
-2\int\frac{1}{u+4}\,du \right]+C$$
$\textit{Then Integrate}\\$
$$I=2u+4\ln(u-4)-4\ln(u+4)+C$$
$\textit{Then substute back in $u=\sqrt{16+5x}$}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(\sqrt{5x+16}-4)-4\log(\sqrt{5x-16}+4)+C$$
☕

Can you explain what minor error in notation used by both you and W|A has led to different answers?
 
  • #5
karush said:
$\tiny{242 .10.09.8}\\$
$\textsf{Express the integrand as a sum of partial fractions and evaluate integral}$
\begin{align*}\displaystyle
I&=\int f \, dx = \int\frac{\sqrt{16+5x}}{x} \, dx
\end{align*}
\begin{align*}\displaystyle
f&=\frac{\sqrt{16+5x}}{x}
=\frac{\sqrt{16+5x}}{x}\cdot\frac{\sqrt{16+5x}}{\sqrt{16+5x}}\\
&=\frac{16+5x}{x\sqrt{16+5x}}=\frac{16}{x}+\frac{5x}{\sqrt{16+5x}}
\end{align*}
$\textsf{ok, I did something ??}\\$
$\textsf{Answer from}$ $ \textbf{W|A}$
$$\displaystyle I= 2\sqrt{5x+16}+4\log(4-\sqrt{5x+16})-4\log(\sqrt{5x-16}+4)+C$$

If you are going to try to use algebraic manipulation to perform an integral, you MUST do the algebra correctly!

$\displaystyle \begin{align*} \int{ \frac{16 + 5\,x}{x\,\sqrt{16 + 5\,x}}\,\mathrm{d}x } &= \int{ \left( \frac{16}{x\,\sqrt{16 + 5\,x}} + \frac{5\,x}{x\,\sqrt{16 + 5\,x}} \right) \,\mathrm{d}x } \\ &= \int{ \left( \frac{16}{x\,\sqrt{16 + 5\,x}} + \frac{5}{\sqrt{16 + 5\,x}} \right) \,\mathrm{d}x } \\ &= \int{ \frac{16}{x\,\sqrt{16 + 5\,x}} \,\mathrm{d}x } + \int{ \frac{5}{\sqrt{16 + 5\,x}} \,\mathrm{d}x } \\ &= \frac{16}{5} \int{ \frac{5}{x\,\sqrt{16 - 5\,x}} \,\mathrm{d}x } + \int{ \frac{5}{\sqrt{16 + 5\,x}}\,\mathrm{d}x } \end{align*}$

Now let $\displaystyle \begin{align*} u = 16 + 5\,x \implies \mathrm{d}u = 5\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \frac{16}{5}\int{ \frac{5}{x\,\sqrt{16 + 5\,x}}\,\mathrm{d}x } + \int{ \frac{5}{\sqrt{16 + 5\,x}} \,\mathrm{d}x } &= \frac{16}{5}\int{ \frac{1}{\left( \frac{u - 16}{5} \right) \,\sqrt{u}}\,\mathrm{d}u } + \int{
\frac{1}{\sqrt{u}} \,\mathrm{d}u } \\ &= 16 \int{ \frac{1}{\left[ \left( \sqrt{u} \right) ^2 - 16 \right] \,\sqrt{u}} \,\mathrm{d}u } + \int{u^{-\frac{1}{2}}\,\mathrm{d}u} \\ &= 32 \int{ \left[ \frac{1}{\left( \sqrt{u} \right) ^2 - 16 } \right] \,\frac{1}{2\,\sqrt{u}} \,\mathrm{d}u } + \frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C_1 \end{align*}$

So now let $\displaystyle \begin{align*} v = \sqrt{u} \implies \mathrm{d}v = \frac{1}{2\,\sqrt{u}}\,\mathrm{d}u \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} 32\int{ \left[ \frac{1}{ \left( \sqrt{u} \right) ^2 - 16 } \right] \,\frac{1}{2\,\sqrt{u}}\,\mathrm{d}u } + \frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C_1 &= 32 \int{ \frac{1}{v^2 - 16} \,\mathrm{d}v } + 2\,\sqrt{u} + C_1 \\ &= 32 \int{ \frac{1}{ \left( v - 4 \right) \left( v + 4 \right) } \,\mathrm{d}v } + 2\,\sqrt{16 + 5\,x} + C_1 \end{align*}$

and now it's in a form you can use Partial Fractions for...
 
  • #6
MarkFL said:
Can you explain what minor error in notation used by both you and W|A has led to different answers?

I presume it was the 3rd term should be

$$-4\log(\sqrt{5x+16}+4)$$
 
  • #7
karush said:
I presume it was the 3rd term should be

$$-4\log(\sqrt{5x+16}+4)$$

No, it's the second term, which W|A gives as:

\(\displaystyle 4\log(4-\sqrt{5x+16})\)

But, you gave as:

\(\displaystyle 4\log(\sqrt{5x-16}-4)\)

You should confirm that these two different terms do not differ by a constant. The issue here is that what should be used is:

\(\displaystyle \int \frac{du}{u}=\ln|u|+C\)
 

FAQ: How Do You Express and Evaluate This Integral Using Partial Fractions?

What are partial fractions and why are they used in integration?

Partial fractions are a method used to break down a rational function into simpler fractions. They are used in integration to simplify the integration process and make it easier to evaluate the integral.

How do you express the integrand as a sum of partial fractions?

To express the integrand as a sum of partial fractions, the denominator of the rational function must be factored into linear or irreducible quadratic factors. Then, the coefficients of each partial fraction can be determined using methods such as equating coefficients or the Heaviside cover-up method.

Can you provide an example of expressing the integrand as a sum of partial fractions?

Yes, for the integrand 2x / (x^2 + 3x + 2), the denominator can be factored into (x+1)(x+2). Then, the partial fractions can be expressed as A/(x+1) + B/(x+2). The coefficients A and B can be determined by equating coefficients or using the Heaviside cover-up method.

How is the integral evaluated after expressing the integrand as a sum of partial fractions?

Once the integrand has been expressed as a sum of partial fractions, the integral can be evaluated by integrating each partial fraction separately. This can be done using basic integration rules or by using tables of integrals.

Can you provide the final result after evaluating the integral?

The final result after evaluating the integral will depend on the specific integrand and limits of integration given. However, the final result should be a numerical value or an expression in terms of the given variable.

Similar threads

Replies
3
Views
2K
Replies
6
Views
2K
Replies
8
Views
2K
Replies
4
Views
1K
Replies
3
Views
2K
Replies
8
Views
2K
Replies
3
Views
1K
Replies
4
Views
2K
Replies
3
Views
2K
Back
Top