- #1
chester20080
- 56
- 1
We have a matrix with dimension NxN.For some m belongs to N,m0 we have A^m0=0.We consider the exponential matrix e^A=I+A+A^2/(2!)+A^2/(3!)+A^m/(m!).Find the inverse matrix of e^A.
I tried to write the e^A=e^A(m0)+A^m/(m!) or (e^A)^(-1)=( I+A+A^2/(2!)+A^2/(3!)+A^m/(m!))^(-1)=I+A^(-1)(I+2/3A(-1)+1/(m!)(A^(-1))^(m-1)) or (e^A)^(-1)=(e^(-1))^A=(1/e)^A=1/(e^A)=1/( I+A+A^2/(2!)+A^2/(3!)+A^m/(m!)),but I don't know how to proceed any further.How am I supposed to end up with m0 and the result of (e^A)^(-1) will equal to something(A),(A^(-1)?Please help.
I tried to write the e^A=e^A(m0)+A^m/(m!) or (e^A)^(-1)=( I+A+A^2/(2!)+A^2/(3!)+A^m/(m!))^(-1)=I+A^(-1)(I+2/3A(-1)+1/(m!)(A^(-1))^(m-1)) or (e^A)^(-1)=(e^(-1))^A=(1/e)^A=1/(e^A)=1/( I+A+A^2/(2!)+A^2/(3!)+A^m/(m!)),but I don't know how to proceed any further.How am I supposed to end up with m0 and the result of (e^A)^(-1) will equal to something(A),(A^(-1)?Please help.