- #1
damarkk
- 8
- 2
- Homework Statement
- Find the probability for all possible unperturbed states ##| n\rangle## for an harmonic oscillator with perturbation ##V(x)=\alpha x^3##
- Relevant Equations
- ##x##, ##p##.
I have one tremendous doubt about it.
On ##t=0## the state of the oscillator is ##| \Psi (t) \rangle = | 1 \rangle ##. The perturbation is ##V(x)=\alpha x^3 = \alpha (\frac{\hbar}{2m\omega})^{3/2} (a+a^{\dagger})^3 = \gamma (a^3+3Na+3Na^{\dagger} + 3a + (a^{\dagger})^3)##.
The only possible other states are ##|0 \rangle##, ##| 2\rangle##, ##|4\rangle##. The state corrected on the first order is:
##|\Psi \rangle = |1 \rangle + c_0|0 \rangle + c_2|2 \rangle + c_4|4\rangle##
where ##c_k = \langle k| V(x) | 1 \rangle ##.
What are the probability to find the oscillator in a generic state ##|n \rangle##?
My answer is ##P_k = |c_k|^2##, but for k=1 we have ##P_1 = 1##. This is not possible I think. On the other hand, I suppose that ##P_1 = 1-P_0 - P_2- P_4 = 1-|c_0|^2-|c_2|^2-|c_4|^2##, but how can I show this? The coefficient of ##| 1\rangle## is 1. This is my question.
On ##t=0## the state of the oscillator is ##| \Psi (t) \rangle = | 1 \rangle ##. The perturbation is ##V(x)=\alpha x^3 = \alpha (\frac{\hbar}{2m\omega})^{3/2} (a+a^{\dagger})^3 = \gamma (a^3+3Na+3Na^{\dagger} + 3a + (a^{\dagger})^3)##.
The only possible other states are ##|0 \rangle##, ##| 2\rangle##, ##|4\rangle##. The state corrected on the first order is:
##|\Psi \rangle = |1 \rangle + c_0|0 \rangle + c_2|2 \rangle + c_4|4\rangle##
where ##c_k = \langle k| V(x) | 1 \rangle ##.
What are the probability to find the oscillator in a generic state ##|n \rangle##?
My answer is ##P_k = |c_k|^2##, but for k=1 we have ##P_1 = 1##. This is not possible I think. On the other hand, I suppose that ##P_1 = 1-P_0 - P_2- P_4 = 1-|c_0|^2-|c_2|^2-|c_4|^2##, but how can I show this? The coefficient of ##| 1\rangle## is 1. This is my question.