- #1
spaghetti3451
- 1,344
- 34
Consider the equation ##\mathcal{F}(\lambda)=0\ \ \ \forall\ \lambda = \lambda_{n},\ n \in \mathbb{N}##.
I understand that the expression ##\frac{d}{d\lambda}\ \ln\mathcal{F}(\lambda)=\frac{\mathcal{F'(\lambda)}}{\mathcal{F}(\lambda)}## has poles of order 1 exactly at ##\lambda_{n}## because ##\frac{\mathcal{F'(\lambda)}}{\mathcal{F}(\lambda)}=\frac{\mathcal{F'(\lambda)}}{(\lambda- \lambda_{1})...(\lambda-\lambda_{n})}##.
I wonder how I might expand the expression ##\frac{d}{d\lambda}\ \ln\mathcal{F}(\lambda)=\frac{\mathcal{F'(\lambda)}}{\mathcal{F}(\lambda)}## about ##\lambda_{n}## to find out that the residue of the poles is 1.
Any ideas?
I understand that the expression ##\frac{d}{d\lambda}\ \ln\mathcal{F}(\lambda)=\frac{\mathcal{F'(\lambda)}}{\mathcal{F}(\lambda)}## has poles of order 1 exactly at ##\lambda_{n}## because ##\frac{\mathcal{F'(\lambda)}}{\mathcal{F}(\lambda)}=\frac{\mathcal{F'(\lambda)}}{(\lambda- \lambda_{1})...(\lambda-\lambda_{n})}##.
I wonder how I might expand the expression ##\frac{d}{d\lambda}\ \ln\mathcal{F}(\lambda)=\frac{\mathcal{F'(\lambda)}}{\mathcal{F}(\lambda)}## about ##\lambda_{n}## to find out that the residue of the poles is 1.
Any ideas?