- #1
Incand
- 334
- 47
Homework Statement
Let ##f:X \to Y##. Show that
##f## not uniform continuous on ##X## ##\Longleftrightarrow## ##\exists \epsilon > 0## and sequences ##(p_n), (q_n)## in ##X## so that ##d_X(p_n,q_n)\to 0 ## while ##d_Y(f(p_n),f(q_n))\ge \epsilon##.
Homework Equations
Let ##f:X\to Y##. We say ##f## is uniform continuous on ##X## if ##\forall \epsilon >0 \exists \delta > 0## so that
##d_Y(f(x),f(y))< \epsilon## ##\forall x,y\in X## for which ##d_X(x,y)< \delta##.
The Attempt at a Solution
I was hoping someone could take a look at my proof and check if it's correct or not. I found the second part especially hard to formulate so I'm mostly unsure about that part.
Starting with ##\Longleftarrow##
##d(p_n,q_n) \to 0## means by definition that
##\forall \delta > 0## ##\exists N## so that ##d(p_n,q_n) < \delta## for ##n \ge N##. But then ##f## can't be uniform continuous since the points ##p_n, q_n \in X## and ##d_Y(f(p_n),f(q_n))\ge \epsilon_0## we have a counter example to
##d(x,y)<\delta \Longrightarrow d(f(x),f(y)< \epsilon## if we take a ##\epsilon < \epsilon_0##.
##\Longrightarrow##
That ##f## is not uniform continuous implies that ##\exists \epsilon >0## so that ##\forall \delta > 0## there exists ##x,y\in X## so that
##d_X(x,y)< \delta \Longrightarrow d_Y(f(x),f(y))\ge \epsilon##. Let's select some ##x,y## satisfying this and set ##p_n = x## and ##q_n =y## and we're done.