MHB How Do You Prove a Logarithmic Identity Involving Powers of x?

AI Thread Summary
The discussion centers on proving the equation log(x)·log(x^2)·log(x^3)·...·log(x^90) = 4095. A participant points out that the equation is false when x=1, leading to a contradiction. The correct interpretation involves summing the logarithms, which can be expressed as log(x) multiplied by the sum of integers from 1 to 90. This results in the equation summing to 4095·log(x), clarifying the misunderstanding. The final conclusion emphasizes the importance of correctly interpreting logarithmic identities.
Chipset3600
Messages
79
Reaction score
0
Hello MHB.

How can i proof this equation?

[h=5]log(x).log(x^2).log(x^3)... log(x^90)=4095[/h]
 
Mathematics news on Phys.org
Re: Proof

Chipset3600 said:
Hello MHB.

How can i proof this equation?

log(x).log(x^2).log(x^3)... log(x^90)=4095
This ain't true. Put x=1 and you get 0=4095.
 
Re: Proof

Chipset3600 said:
Hello MHB.

How can i proof this equation?

[h=5]log(x).log(x^2).log(x^3)... log(x^90)=4095[/h]

Let's assume you mean to do something with the expression
$$log(x)+log(x^2)+log(x^3)+\cdots +log(x^{90})$$
(by the way, we could also write this as $\sum_{n=1}^{90} log\left(x^n\right)$ )

What we could do is say that for any n, we have $log(x^n)=n\cdot log(x)$. With that in mind, our sum becomes
$$log(x)+2 \, log(x)+3\, log(x)+\cdots +90\, log(x)$$
factoring, we have
$$(1+2+3+\cdots+90)\,log(x)$$
which gives us
$$\sum_{n=1}^{90} log\left(x^n\right)=\frac{91\cdot 90}{2} \,log(x) = 4095\,log(x)$$
Which is what I assume you meant.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top