- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Could you give me a hint how to prove the following property of the Fourier transform, when $F[f(x)]=\widetilde{f}(x)$, where $F[f(x)]$ is the Fourier transform of $f(x)$?
$$F[ \widetilde{f}(x) ]= \frac{f(-k)}{2 \pi}$$
We know that: $ \widetilde{f}(k)=\int_{- \infty}^{+ \infty}{ {f}(x) e^{-i k x}}dx$ and $f(x)=\frac{1}{2 \pi}\int_{- \infty}^{+ \infty}{ \widetilde{f}(k) e^{i k x}}dx$.
I thought the following:
$F[\widetilde{f}(x)]=\int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{-ikx}}dx=2 \pi \frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{ix(-k)}}dx=2 \pi f(-k)$
But then $2 \pi$ would be at the numerator..
Have I done something wrong or can we not prove this in this way?
Then an other idea is:
$\widetilde{f}(x)=\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk \Rightarrow F[\widetilde{f}(x)]=F[\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk]=\int_{-\infty}^{+\infty}{\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-2ikx}}}dkdx$
How could we continue?
Or is there an other way to prove the property?? (Worried)
Could you give me a hint how to prove the following property of the Fourier transform, when $F[f(x)]=\widetilde{f}(x)$, where $F[f(x)]$ is the Fourier transform of $f(x)$?
$$F[ \widetilde{f}(x) ]= \frac{f(-k)}{2 \pi}$$
We know that: $ \widetilde{f}(k)=\int_{- \infty}^{+ \infty}{ {f}(x) e^{-i k x}}dx$ and $f(x)=\frac{1}{2 \pi}\int_{- \infty}^{+ \infty}{ \widetilde{f}(k) e^{i k x}}dx$.
I thought the following:
$F[\widetilde{f}(x)]=\int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{-ikx}}dx=2 \pi \frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\widetilde{f}(x)e^{ix(-k)}}dx=2 \pi f(-k)$
But then $2 \pi$ would be at the numerator..
Have I done something wrong or can we not prove this in this way?
Then an other idea is:
$\widetilde{f}(x)=\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk \Rightarrow F[\widetilde{f}(x)]=F[\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-ikx}}dk]=\int_{-\infty}^{+\infty}{\int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{-2ikx}}}dkdx$
How could we continue?
Or is there an other way to prove the property?? (Worried)