- #1
Emanuel84
- 14
- 0
Hi, I'm wondering how to prove the following...can you help me?
[itex]
F^{\mu \rho} G_{\rho \nu} = \eta^\mu_{\phantom{\mu}\nu} \mathbf{E} \cdot \mathbf{B}
[/itex][itex]
F^{\mu \nu} F_{\mu \nu} = -2\left(\mathbf{E}^2-\mathbf{B}^2\right)
[/itex][itex]
G^{\mu \nu} F_{\mu \nu} = -4\,\mathbf{E} \cdot \mathbf{B}
[/itex][itex]
G^{\mu \nu} G_{\mu \nu} = F^{\mu \nu} F_{\mu \nu}
[/itex]
[itex]F[/itex] is the electromagnetic tensor, [itex]G[/itex] is it's dual, [itex]\eta[/itex] is the metric tensor, [itex]\mathbf{E}[/itex] and [itex]\mathbf{B}[/itex] the electric and magnetic field respectively.Thank you for your patience!
[itex]
F^{\mu \rho} G_{\rho \nu} = \eta^\mu_{\phantom{\mu}\nu} \mathbf{E} \cdot \mathbf{B}
[/itex][itex]
F^{\mu \nu} F_{\mu \nu} = -2\left(\mathbf{E}^2-\mathbf{B}^2\right)
[/itex][itex]
G^{\mu \nu} F_{\mu \nu} = -4\,\mathbf{E} \cdot \mathbf{B}
[/itex][itex]
G^{\mu \nu} G_{\mu \nu} = F^{\mu \nu} F_{\mu \nu}
[/itex]
[itex]F[/itex] is the electromagnetic tensor, [itex]G[/itex] is it's dual, [itex]\eta[/itex] is the metric tensor, [itex]\mathbf{E}[/itex] and [itex]\mathbf{B}[/itex] the electric and magnetic field respectively.Thank you for your patience!
Last edited: