- #1
DivGradCurl
- 372
- 0
I have two similar problems. I need to show that
1. [tex] \frac{1}{2} \left( T_n + M_n \right) = T_{2n} [/tex]
2. [tex] \frac{1}{3} T_n + \frac{2}{3} M_n = S_{2n} [/tex]
where:
[tex]T[/tex] is the Trapezoidal rule.
[tex]M[/tex] is the Midpoint rule.
[tex]S[/tex] is Simpson's rule.
This is what I've got:
[tex]T_n = \frac{b-a}{2n}\left[ f\left( x_0 \right) + 2f\left( x_1 \right) + 2f\left( x_2 \right) + \dots + 2f\left( x_{n-2} \right) + 2f\left( x_{n-1} \right) + f\left( x_{n} \right) \right][/tex]
[tex]T_{2n} = \frac{b-a}{4n}\left[ f\left( x_0 \right) + 2f\left( x_2 \right) + 2f\left( x_4 \right) + \dots + 2f\left( x_{2n-2} \right) + 2f\left( x_{2n-1} \right) + f\left( x_{2n} \right) \right][/tex]
[tex]M_n = \frac{b-a}{n}\left[ f\left( \bar{x}_1 \right) + f\left( \bar{x}_2 \right) + f\left( \bar{x}_3 \right) + \dots + f\left( \bar{x}_{n} \right) \right][/tex]
[tex]S_n = \frac{b-a}{3n}\left[ f\left( x_0 \right) + 4f\left( x_1 \right) + 2f\left( x_2 \right) + 4f\left( x_3 \right) + \dots + 4f\left( x_{n-3} \right) + 2f\left( x_{n-2} \right) + 4f\left( x_{n-1} \right) + f\left( x_{n} \right) \right][/tex]
[tex]S_{2n} = \frac{b-a}{6n}\left[ f\left( x_0 \right) + 4f\left( x_2 \right) + 2f\left( x_4 \right) + 4f\left( x_6 \right) + \dots + 4f\left( x_{2n-3} \right) + 2f\left( x_{2n-2} \right) + 4f\left( x_{2n-1} \right) + f\left( x_{2n} \right) \right][/tex]
The main difficulty I've had is to deal with the [tex]f\left( \bar{x}_{n} \right)[/tex] terms, since I can't see a way to combine them with the [tex]f\left( x_{n} \right)[/tex] ones.
Any help is highly appreciated.
1. [tex] \frac{1}{2} \left( T_n + M_n \right) = T_{2n} [/tex]
2. [tex] \frac{1}{3} T_n + \frac{2}{3} M_n = S_{2n} [/tex]
where:
[tex]T[/tex] is the Trapezoidal rule.
[tex]M[/tex] is the Midpoint rule.
[tex]S[/tex] is Simpson's rule.
This is what I've got:
[tex]T_n = \frac{b-a}{2n}\left[ f\left( x_0 \right) + 2f\left( x_1 \right) + 2f\left( x_2 \right) + \dots + 2f\left( x_{n-2} \right) + 2f\left( x_{n-1} \right) + f\left( x_{n} \right) \right][/tex]
[tex]T_{2n} = \frac{b-a}{4n}\left[ f\left( x_0 \right) + 2f\left( x_2 \right) + 2f\left( x_4 \right) + \dots + 2f\left( x_{2n-2} \right) + 2f\left( x_{2n-1} \right) + f\left( x_{2n} \right) \right][/tex]
[tex]M_n = \frac{b-a}{n}\left[ f\left( \bar{x}_1 \right) + f\left( \bar{x}_2 \right) + f\left( \bar{x}_3 \right) + \dots + f\left( \bar{x}_{n} \right) \right][/tex]
[tex]S_n = \frac{b-a}{3n}\left[ f\left( x_0 \right) + 4f\left( x_1 \right) + 2f\left( x_2 \right) + 4f\left( x_3 \right) + \dots + 4f\left( x_{n-3} \right) + 2f\left( x_{n-2} \right) + 4f\left( x_{n-1} \right) + f\left( x_{n} \right) \right][/tex]
[tex]S_{2n} = \frac{b-a}{6n}\left[ f\left( x_0 \right) + 4f\left( x_2 \right) + 2f\left( x_4 \right) + 4f\left( x_6 \right) + \dots + 4f\left( x_{2n-3} \right) + 2f\left( x_{2n-2} \right) + 4f\left( x_{2n-1} \right) + f\left( x_{2n} \right) \right][/tex]
The main difficulty I've had is to deal with the [tex]f\left( \bar{x}_{n} \right)[/tex] terms, since I can't see a way to combine them with the [tex]f\left( x_{n} \right)[/tex] ones.
Any help is highly appreciated.