- #1
IHateMayonnaise
- 94
- 0
Homework Statement
Prove the schwarz inequality:
[tex]|<\alpha|\beta>|^2\leq<\alpha|\alpha><\beta|\beta>[/tex]
Homework Equations
[tex]<\alpha|\alpha>\geq 0[/tex]
[tex]|\alpha>=|\beta>-\left(\frac{<\alpha|\beta>}{<\alpha|\alpha>}\right )|\alpha>[/tex]
The Attempt at a Solution
The first step would obviously be to evaluate the first equation using the second:
[tex] <\alpha|\alpha>=\left <|\beta>-\left(\frac{<\alpha|\beta>}{<\alpha|\alpha>}\right )|\alpha>\middle | |\beta>-\left(\frac{<\alpha|\beta>}{<\alpha|\alpha>}\right )|\alpha>\right>[/tex]
..And from here I am kind of stumped. I am familiar with the identity [tex]<a+b|c>=<a|c>+<b|c>[/tex], however what would the identity be for [tex]<a+b|a+b>[/tex]? Am I even going in the right direction here?
In Shanker's Principles of Quantum Mechanics 2nd ed. Pg 17, it says that the next step is:
[tex]=<\beta|\beta>-\frac{<\alpha|\beta><\beta|\alpha>}{<\alpha|\alpha>}-\frac{<\alpha|\beta>^*<\alpha|\beta>}{<\alpha|\alpha>}[/tex]
I am not understanding this logic. I know that [tex]<\alpha|\beta>[/tex] represents the inner product of [tex]\alpha[/tex] and [tex]\beta[/tex], respectfully, but I do not understand how he gets to that step.