- #1
karush
Gold Member
MHB
- 3,269
- 5
$$\frac{\frac{u}{v}-\frac{{v}^{2 }}{v+4}}{\frac{{u}^{2}}{v}+\frac{v}{{u}^{2}}}
=\frac{uv+4u-{v}^{3 }}{{v}^{2}+4v}
\cdot\frac{{u}^{2}v}{{u}^{4}+{v}^{2}}
=\frac{u^3 v^2+4{u}^{3}v-{u}^{2}v^4}
{{u}^{4 }v^2+4{u}^{4}v+v^4+4{v}^{3} }
=$$
$$=\frac{u^3 v+4{u}^{3}-{u}^{2}v^3}
{{u}^{4 }v+4{u}^{4}+v^4+4{v}^{2 } }
$$
Steps: Common denomator, Mutiply by reciprocal, Factor out v
I have done this 5 times and get different answers
=\frac{uv+4u-{v}^{3 }}{{v}^{2}+4v}
\cdot\frac{{u}^{2}v}{{u}^{4}+{v}^{2}}
=\frac{u^3 v^2+4{u}^{3}v-{u}^{2}v^4}
{{u}^{4 }v^2+4{u}^{4}v+v^4+4{v}^{3} }
=$$
$$=\frac{u^3 v+4{u}^{3}-{u}^{2}v^3}
{{u}^{4 }v+4{u}^{4}+v^4+4{v}^{2 } }
$$
Steps: Common denomator, Mutiply by reciprocal, Factor out v
I have done this 5 times and get different answers