- #1
SnowOwl18
- 71
- 0
I'm trying to help a friend with this problem and we are both very stuck. I wanted to ask for help here for him.
-------A 1.0 kg tin of anti-oxidants on a frictionless inclined surface is
connected to a 2.0 kg tin of corned beef. The pulley is massless and frictionless. An
upward force F r of 6.0 N acts on the corned beef tin, which has a downward acceleration
of 5.5 m/s2. (a) What is the tension in the connecting cord? (b) What is the angle b ?--------
Unfortunately, I can't post the picture of the problem...but basically there is one tin (anti-oxidants) on an incline and attached to it is a cord that goes through a pulley...and on the other end of the cord, hanging straight down is the other tin (corned beef). The angle, b, is the angle of the incline, i think. I found an equation that might work for finding the tension. T= [(m1m2(1+sintheta))/ m1 + m2]g . But the problem is we don't know the angle or how to find it. If anyone could please help us out, we'd greatly appreciate it.
-------A 1.0 kg tin of anti-oxidants on a frictionless inclined surface is
connected to a 2.0 kg tin of corned beef. The pulley is massless and frictionless. An
upward force F r of 6.0 N acts on the corned beef tin, which has a downward acceleration
of 5.5 m/s2. (a) What is the tension in the connecting cord? (b) What is the angle b ?--------
Unfortunately, I can't post the picture of the problem...but basically there is one tin (anti-oxidants) on an incline and attached to it is a cord that goes through a pulley...and on the other end of the cord, hanging straight down is the other tin (corned beef). The angle, b, is the angle of the incline, i think. I found an equation that might work for finding the tension. T= [(m1m2(1+sintheta))/ m1 + m2]g . But the problem is we don't know the angle or how to find it. If anyone could please help us out, we'd greatly appreciate it.