- #1
Broccoli21
- 80
- 1
I am pretty lost as to how to solve this problem
A solid sphere of mass m (homogeneously distributed throughout) and radius r is attached to a spring of spring constant k whose other end is attached to a sturdy wall. (assume that the spring is attached at the sphere's center, but still allows it to roll)
(a) Assuming that the sphere rolls without slipping. Find the position of
the sphere’s center of mass x (as a function of time) using only rotational dynamics. At time zero, the ball is stationary at distance A away from its equilibrium position.
(b) Find the force of friction as a function of position.
(c) If P is the point on the sphere touching the ground at t=0, find the path of P in terms of t
Newton's 2nd:
F=ma
torque=I(alpha)
I=(2/5)mr^2
F_s=force of spring=-kx (x=0 is equilibrium)
F_k = friction = umg
w=angular velocity
when rolling without slipping, Rv=w, R(alpha)=a
total force on ball = F_s + F_k
I really have no idea as to how to solve this. I could set up a differential equation, but for Newton's law, the direction of the frictional force F_k changes direction, and I don't know how to factor that in. I can do part (c) easily after that.
Thanks in advance for the help!
Homework Statement
A solid sphere of mass m (homogeneously distributed throughout) and radius r is attached to a spring of spring constant k whose other end is attached to a sturdy wall. (assume that the spring is attached at the sphere's center, but still allows it to roll)
(a) Assuming that the sphere rolls without slipping. Find the position of
the sphere’s center of mass x (as a function of time) using only rotational dynamics. At time zero, the ball is stationary at distance A away from its equilibrium position.
(b) Find the force of friction as a function of position.
(c) If P is the point on the sphere touching the ground at t=0, find the path of P in terms of t
Homework Equations
Newton's 2nd:
F=ma
torque=I(alpha)
I=(2/5)mr^2
F_s=force of spring=-kx (x=0 is equilibrium)
F_k = friction = umg
w=angular velocity
when rolling without slipping, Rv=w, R(alpha)=a
total force on ball = F_s + F_k
The Attempt at a Solution
I really have no idea as to how to solve this. I could set up a differential equation, but for Newton's law, the direction of the frictional force F_k changes direction, and I don't know how to factor that in. I can do part (c) easily after that.
Thanks in advance for the help!