- #1
karush
Gold Member
MHB
- 3,269
- 5
find x
$\displaystyle\frac{e^x+e^{-x}}{2}=3$
ok we have the indenty of
$$\displaystyle\cosh{x}=\frac{e^x+e^{-x}}{2}$$
presume then the x can be replaced by 3
$$\displaystyle\cosh{3}=\frac{e^3+e^{-3}}{2}$$
ok $W\vert A$ returns
$x = \ln(3 \pm 2 \sqrt 2)$
ok so how??
$\displaystyle\frac{e^x+e^{-x}}{2}=3$
ok we have the indenty of
$$\displaystyle\cosh{x}=\frac{e^x+e^{-x}}{2}$$
presume then the x can be replaced by 3
$$\displaystyle\cosh{3}=\frac{e^3+e^{-3}}{2}$$
ok $W\vert A$ returns
$x = \ln(3 \pm 2 \sqrt 2)$
ok so how??