- #1
vilhelm
- 37
- 0
The problem statement
find all complex numbers z, that satisfies the equation
[itex]e^{z}\; =\; -1\; -i[/itex]
The attempt at a solution
[itex]z=a+bi[/itex]
[itex]e^{\left( a+bi \right)}\; =\; e^{a}\cdot e^{bi}\; =\; e^{a}\left( \cos b\; +\; i\; \sin b \right)[/itex]
I seek
[itex]\begin{cases}e^a cos(b)=-1 \\ e^a sin(b)=-1 \end{cases}[/itex]
So, what b satisfies sin(b) = cos(b) ?
In the unit circle, I see: [itex]b=\frac{\pi }{4}+\pi n[/itex] as that angle for b. b is done.
[itex]e^{a}\cos \left( \frac{\pi }{4} \right)=-1[/itex]
[itex]e^{a}=-\sqrt{2}[/itex]
[itex]a=\ln \left( -\sqrt{2} \right)[/itex]
[itex]\Rightarrow[/itex] [itex]z=\ln \left( -\sqrt{2} \right)+i\left( \frac{\pi }{4}+\pi n \right)[/itex]
find all complex numbers z, that satisfies the equation
[itex]e^{z}\; =\; -1\; -i[/itex]
The attempt at a solution
[itex]z=a+bi[/itex]
[itex]e^{\left( a+bi \right)}\; =\; e^{a}\cdot e^{bi}\; =\; e^{a}\left( \cos b\; +\; i\; \sin b \right)[/itex]
I seek
[itex]\begin{cases}e^a cos(b)=-1 \\ e^a sin(b)=-1 \end{cases}[/itex]
So, what b satisfies sin(b) = cos(b) ?
In the unit circle, I see: [itex]b=\frac{\pi }{4}+\pi n[/itex] as that angle for b. b is done.
[itex]e^{a}\cos \left( \frac{\pi }{4} \right)=-1[/itex]
[itex]e^{a}=-\sqrt{2}[/itex]
[itex]a=\ln \left( -\sqrt{2} \right)[/itex]
[itex]\Rightarrow[/itex] [itex]z=\ln \left( -\sqrt{2} \right)+i\left( \frac{\pi }{4}+\pi n \right)[/itex]