- #1
karush
Gold Member
MHB
- 3,269
- 5
Let \(\displaystyle f(x) = k\ log_2 x\)
(a) Given that \(\displaystyle f^{-1}(1)=8\), find the value of \(\displaystyle k\)
to get \(\displaystyle f^{-1}(x)\) exchange \(\displaystyle x\) and \(\displaystyle y\)
\(\displaystyle x=log_2 y^k\)
then convert to exponential form
\(\displaystyle 2^x=y^k \) then \(\displaystyle 2^{\frac{x}{k}} = y\)
so for \(\displaystyle f^{-1}(1) = 2^{\frac{1}{k}}= 8=2^3\) then \(\displaystyle \frac{1}{k}=3\) so \(\displaystyle k=\frac{1}{3}\)
(b) find \(\displaystyle f^{-1}\bigg(\frac{2}{3}\bigg)=2^{\frac{2}{3}\frac{3}{1}}=2^2=4\)
(a) Given that \(\displaystyle f^{-1}(1)=8\), find the value of \(\displaystyle k\)
to get \(\displaystyle f^{-1}(x)\) exchange \(\displaystyle x\) and \(\displaystyle y\)
\(\displaystyle x=log_2 y^k\)
then convert to exponential form
\(\displaystyle 2^x=y^k \) then \(\displaystyle 2^{\frac{x}{k}} = y\)
so for \(\displaystyle f^{-1}(1) = 2^{\frac{1}{k}}= 8=2^3\) then \(\displaystyle \frac{1}{k}=3\) so \(\displaystyle k=\frac{1}{3}\)
(b) find \(\displaystyle f^{-1}\bigg(\frac{2}{3}\bigg)=2^{\frac{2}{3}\frac{3}{1}}=2^2=4\)