- #1
Saitama
- 4,243
- 93
I am trying to evaluate the following integral:
$$\int_0^{2\pi} \ln|a+b\sin x|\,dx$$
where $0<a<b$.
Source: homework - Find the value of the integral $\int_0^{2\pi}\ln|a+b\sin x|dx$ where $0\lt a\lt b$ - Mathematics Stack Exchange
Attempt:
Consider
$$I(a)=\int_0^{2\pi} \ln|a+b\sin x|\,dx$$
It can be shown that:
$$I(a)=2\int_0^{\pi/2} \ln|a^2-b^2\sin^2x|\,dx$$
Differentiate both sides wrt $a$ to get:
$$\frac{dI}{da}=4a\int_0^{\pi/2}\frac{dx}{a^2-b^2\sin^2x}$$
Next, I rewrite the denominator as:
$$a^2-b^2\sin^2x=\frac{a^2+(a^2-b^2)\tan^2x}{\sec^2x}$$
Using the substitution $\tan x=t$, I obtain the following definite integral:
$$\frac{dI}{da}=4a\int_0^{\infty} \frac{dt}{a^2+(a^2-b^2)t^2}$$
$$\Rightarrow \frac{dI}{da}=\frac{2\pi}{\sqrt{a^2-b^2}}$$
This is where I am stuck. I don't find the result correct because as per the question, $b>a$ due to which $\sqrt{a^2-b^2}$ doesn't make sense.
Any help is appreciated. Thanks!
EDIT: I thought about it some more and I think I see the error. I found an error at this step:
$$I(a)=2\int_0^{\pi/2} \ln|a^2-b^2\sin^2x|\,dx$$
I cannot simply differentiate the above because of the modulus symbol. $|a^2-b^2\sin^2x|=a^2-b^2\sin^2x$ only if $sin(x)<=a/b$, hence,
$$I(a)=2\left(\int_0^{a/b}\ln(a^2-b^2\sin^2x)\,dx+\int_{a/b}^{\pi/2} \ln(b^2\sin^2x-a^2)\,dx\right)$$
If I differentiate the above, I get:
$$\frac{dI}{da}=2\left(\int_0^{a/b}\frac{2a}{a^2-b^2\sin^2x}\,dx+\int_{a/b}^{\pi/2} \frac{-2a}{b^2\sin^2x-a^2}\,dx\right)$$
which is the same integral as before.
$$\int_0^{2\pi} \ln|a+b\sin x|\,dx$$
where $0<a<b$.
Source: homework - Find the value of the integral $\int_0^{2\pi}\ln|a+b\sin x|dx$ where $0\lt a\lt b$ - Mathematics Stack Exchange
Attempt:
Consider
$$I(a)=\int_0^{2\pi} \ln|a+b\sin x|\,dx$$
It can be shown that:
$$I(a)=2\int_0^{\pi/2} \ln|a^2-b^2\sin^2x|\,dx$$
Differentiate both sides wrt $a$ to get:
$$\frac{dI}{da}=4a\int_0^{\pi/2}\frac{dx}{a^2-b^2\sin^2x}$$
Next, I rewrite the denominator as:
$$a^2-b^2\sin^2x=\frac{a^2+(a^2-b^2)\tan^2x}{\sec^2x}$$
Using the substitution $\tan x=t$, I obtain the following definite integral:
$$\frac{dI}{da}=4a\int_0^{\infty} \frac{dt}{a^2+(a^2-b^2)t^2}$$
$$\Rightarrow \frac{dI}{da}=\frac{2\pi}{\sqrt{a^2-b^2}}$$
This is where I am stuck. I don't find the result correct because as per the question, $b>a$ due to which $\sqrt{a^2-b^2}$ doesn't make sense.
Any help is appreciated. Thanks!
EDIT: I thought about it some more and I think I see the error. I found an error at this step:
$$I(a)=2\int_0^{\pi/2} \ln|a^2-b^2\sin^2x|\,dx$$
I cannot simply differentiate the above because of the modulus symbol. $|a^2-b^2\sin^2x|=a^2-b^2\sin^2x$ only if $sin(x)<=a/b$, hence,
$$I(a)=2\left(\int_0^{a/b}\ln(a^2-b^2\sin^2x)\,dx+\int_{a/b}^{\pi/2} \ln(b^2\sin^2x-a^2)\,dx\right)$$
If I differentiate the above, I get:
$$\frac{dI}{da}=2\left(\int_0^{a/b}\frac{2a}{a^2-b^2\sin^2x}\,dx+\int_{a/b}^{\pi/2} \frac{-2a}{b^2\sin^2x-a^2}\,dx\right)$$
which is the same integral as before.
Last edited: