- #1
Darken1
- 6
- 0
First Question:
Solve the following system of equations
log{x+1}y=2
log{y+1}x=1/4
Work:
Turned them into equations
(x+1)^2=y (y+1)^(1/4)=x
Substituted second equation into the first equation
((y+1)^(1/4)+1)^2=y
factored out and eventually got
((y+1)^1/4)^2+2((y+1)^1/4)+1=y
Tried to use quadratic formula (a=1,b=2,c=1) and got y=-1. -1=-1 Didn't seem relevant.
Tried to factor it out by substituting x = (y+1)^1/4
(x+1)(x+1)=x^4-1 x^4-1=(x^2+1)(x^2-1)=(x^2+1)(x+1)(x-1)
(x+1)(x+1)=(x^2+1)(x+1)(x-1)
(x+1)=(x^2+1)(x-1)(x+1)=(x^2+1)(x-1)
-(x+1) = -(x+1)
0=(x^2+1)(x-1)-(x+1)
x^3-x^2-2=0
Couldn't factor it out.
Also noticed
(x+1)(x+1)=y
x=-1,y=0
Second Question:
Consider the polynomial p(x)=x^4+ax^3+bx^2+cx+d, where a,b,c,d are real numbers.
Given that 1+i and 1-2i are zeroes of p(x), find the values of a,b,c,d.
Work:
x=1+i and x=1-2i are zeroes
(x-1-i)(x-1+2i)=0
Factored it out
x^2-2x+ix+3
Seems to be missing another factor to get to the original equation.
Perhaps I could divide the original equation by the equation I factored out to get the last factor?
No idea at all
Edit: I need sleep geez...
Solve the following system of equations
log{x+1}y=2
log{y+1}x=1/4
Work:
Turned them into equations
(x+1)^2=y (y+1)^(1/4)=x
Substituted second equation into the first equation
((y+1)^(1/4)+1)^2=y
factored out and eventually got
((y+1)^1/4)^2+2((y+1)^1/4)+1=y
Tried to use quadratic formula (a=1,b=2,c=1) and got y=-1. -1=-1 Didn't seem relevant.
Tried to factor it out by substituting x = (y+1)^1/4
(x+1)(x+1)=x^4-1 x^4-1=(x^2+1)(x^2-1)=(x^2+1)(x+1)(x-1)
(x+1)(x+1)=(x^2+1)(x+1)(x-1)
(x+1)=(x^2+1)(x-1)(x+1)=(x^2+1)(x-1)
-(x+1) = -(x+1)
0=(x^2+1)(x-1)-(x+1)
x^3-x^2-2=0
Couldn't factor it out.
Also noticed
(x+1)(x+1)=y
x=-1,y=0
Second Question:
Consider the polynomial p(x)=x^4+ax^3+bx^2+cx+d, where a,b,c,d are real numbers.
Given that 1+i and 1-2i are zeroes of p(x), find the values of a,b,c,d.
Work:
x=1+i and x=1-2i are zeroes
(x-1-i)(x-1+2i)=0
Factored it out
x^2-2x+ix+3
Seems to be missing another factor to get to the original equation.
Perhaps I could divide the original equation by the equation I factored out to get the last factor?
No idea at all
Edit: I need sleep geez...
Last edited: