- #1
mathworker
- 111
- 0
This is the integral I am trying to evaluate. I would very much appreciate any help. \[\int \frac{2x^3-1}{x+x^4}dx\]
MY APPROACH:
\[\int \frac{2x^3-1}{x+x^4}dx\]
\[\int \frac{1}{2}.(\frac{4x^3+1}{x^4+x}-\frac{3}{x^4+x})dx\]
\[\frac{1}{2}\log{x+x^4}-\frac{1}{2}\int \frac{3}{x^4+x})dx\]
now we have to find,
\[\int \frac{3}{x^4+x}dx\]
let,
\[t=\log{x}\]
\[dt=\frac{dx}{x}\]
\[\int \frac{3}{x^4+x}dx=\int \frac{3}{1+e^{3t}}dt\]
i am stuck at this point
MY APPROACH:
\[\int \frac{2x^3-1}{x+x^4}dx\]
\[\int \frac{1}{2}.(\frac{4x^3+1}{x^4+x}-\frac{3}{x^4+x})dx\]
\[\frac{1}{2}\log{x+x^4}-\frac{1}{2}\int \frac{3}{x^4+x})dx\]
now we have to find,
\[\int \frac{3}{x^4+x}dx\]
let,
\[t=\log{x}\]
\[dt=\frac{dx}{x}\]
\[\int \frac{3}{x^4+x}dx=\int \frac{3}{1+e^{3t}}dt\]
i am stuck at this point
Last edited by a moderator: