- #1
whkoh
- 29
- 0
Qn.
By using a suitable substituition, find
[tex]\int{\frac{1}{x\sqrt{1+x^n}}dx}[/tex]
I haven't encountered this specific type of question before, so I went to use the obvious substitution
[tex]u^2=1+x^n[/tex], getting:
[tex]2u=n x^{n-1} \frac{dx}{du}\Leftrightarrow \frac{dx}{du}=\frac{2u}{n} x^{1-n}[/tex]
Hence
[tex]\int{\frac{1}{x\sqrt{1+x^n}}dx}[/tex]
[tex]=\int{\frac{2u}{n x^{1-n+1} \sqrt{u^2}}du[/tex]
[tex]=\int{\frac{2ux^n}{nu}}du[/tex]
[tex]=\int{\frac{2x^n}{n}}du[/tex]
[tex]=\frac{2}{n}\int{x^n}du[/tex]
[tex]=\frac{2}{n}\int{u^2-1}du[/tex]
[tex]=\frac{2}{n}\left(\frac{1}{3}u^3 - u\right)+c[/tex]
[tex]=\frac{2}{n}\left[\frac{1}{3}\left(1+x^n\right)^{\frac{3}{2}}-\sqrt{1+x^n}\right] +c[/tex]
Is it correct?
By using a suitable substituition, find
[tex]\int{\frac{1}{x\sqrt{1+x^n}}dx}[/tex]
I haven't encountered this specific type of question before, so I went to use the obvious substitution
[tex]u^2=1+x^n[/tex], getting:
[tex]2u=n x^{n-1} \frac{dx}{du}\Leftrightarrow \frac{dx}{du}=\frac{2u}{n} x^{1-n}[/tex]
Hence
[tex]\int{\frac{1}{x\sqrt{1+x^n}}dx}[/tex]
[tex]=\int{\frac{2u}{n x^{1-n+1} \sqrt{u^2}}du[/tex]
[tex]=\int{\frac{2ux^n}{nu}}du[/tex]
[tex]=\int{\frac{2x^n}{n}}du[/tex]
[tex]=\frac{2}{n}\int{x^n}du[/tex]
[tex]=\frac{2}{n}\int{u^2-1}du[/tex]
[tex]=\frac{2}{n}\left(\frac{1}{3}u^3 - u\right)+c[/tex]
[tex]=\frac{2}{n}\left[\frac{1}{3}\left(1+x^n\right)^{\frac{3}{2}}-\sqrt{1+x^n}\right] +c[/tex]
Is it correct?