- #1
soroban
- 194
- 0
[tex]\text{We have: }\:\dfrac{1}{89} \;=\;0.01123595\,\,.\,.\,.[/tex]
[tex]\text{The decimal is formed like this:}[/tex]
. . [tex]0.0{\bf1}[/tex]
. . [tex]0.00{\bf1}[/tex]
. . [tex]0.000{\bf2}[/tex]
. . [tex]0.0000{\bf3}[/tex]
. . [tex]0.00000{\bf5}[/tex]
. . [tex]0.000000{\bf8}[/tex]
. . [tex]0.000000{\bf{13}}[/tex]
. . [tex]0.0000000{\bf{21}}[/tex]
. . [tex]0.00000000{\bf{34}}[/tex]
. . . . . . [tex]\vdots[/tex]
[tex]\displaystyle\text{It seems that: }\:\frac{1}{10}\sum^{\infty}_{n=1} \frac{F_n}{10^n} \;=\;\frac{1}{89}[/tex]
. . [tex]\text{where }F_n\text{ is the }n^{th}\text{ Fibonacci number.}[/tex]
[tex]\text{Care to prove it?}[/tex]