- #1
Mindscrape
- 1,861
- 1
If you go to the relativistic Hamiltonian, what allows us to go from
[tex]\dot{\vec{P}} = - \frac{\partial \mathcal{H}}{\partial \vec{x}} = e (\vec{\nabla} \vec{A}) \cdot \dot{\vec{x}} - e \vec{\nabla} \phi [/tex]
to
[tex]\frac{d}{d t}\left(\frac{m \dot{\vec{x}}} {\sqrt {1 - \frac{\dot{\vec{x}}^2}{c^2}}}\right) = e \vec{E} + e \dot{\vec{x}} \times \vec{B}[/tex]
Is there some identity with
[tex]\frac{\partial A^i}{\partial x^i}[/tex]
that turns it into a curl that I'm missing?
[tex]\dot{\vec{P}} = - \frac{\partial \mathcal{H}}{\partial \vec{x}} = e (\vec{\nabla} \vec{A}) \cdot \dot{\vec{x}} - e \vec{\nabla} \phi [/tex]
to
[tex]\frac{d}{d t}\left(\frac{m \dot{\vec{x}}} {\sqrt {1 - \frac{\dot{\vec{x}}^2}{c^2}}}\right) = e \vec{E} + e \dot{\vec{x}} \times \vec{B}[/tex]
Is there some identity with
[tex]\frac{\partial A^i}{\partial x^i}[/tex]
that turns it into a curl that I'm missing?