- #1
unscientific
- 1,734
- 13
Homework Statement
Find the electric field inside dielectric and surface charge density on plates.
Homework Equations
The Attempt at a Solution
[tex]\rho_b = -\vec {\nabla} . \vec{P} = -\vec {\nabla} . \epsilon_0 \chi \vec E = -\vec {\nabla} . (\epsilon_r - 1)\epsilon_0 \vec E[/tex]
[tex]\int \rho_b dV = (1-\epsilon_r)\epsilon_0 \int \vec {\nabla} . \vec E dV[/tex]
[tex] \int \rho_b dV = (1-\epsilon_r)\epsilon_0 \int \vec E . d\vec S [/tex]
[tex]\rho_0 \int (d^2 - x^2) A dx = (1-\epsilon_r)\epsilon_0 EA[/tex]
[tex]E = \frac{\rho_0}{(1-\epsilon_r)\epsilon_0} \int_{x'}^{d} d^2-x'^2 dx'[/tex]
[tex]E = \frac{\rho_0}{(1-\epsilon_r)\epsilon_0}\left[ \frac{2}{3}d^3 - d^2x + \frac{1}{3}x^3\right][/tex]
To find surface charge density,
[tex]\epsilon_0 \nabla . E = \rho_f + \rho_b[/tex]
[tex]\epsilon_0 \int \nabla . E dV = \int \rho_f dV + \int \rho_b dV[/tex]
[tex]\epsilon_0 \int E.dS = \sigma A + \int \rho_b A dx[/tex]
[tex]\epsilon_0 EA = \sigma + \int \rho_b dx[/tex]
Rearranging,
[tex]\sigma = \epsilon_0E - \epsilon_0(1-\epsilon_r)E = \epsilon_0 \epsilon_r E[/tex]
[tex]\sigma = \frac{\rho_0 \epsilon_r}{1-\epsilon_r} \left[ \frac{2}{3}d^3 - d^2x + \frac{1}{3}x^3\right][/tex]