- #1
arnno
- 4
- 0
Homework Statement
______|______
...
...
...
...
......
_____________
|
^ y
|
|_ _ > x
This is supposed to be a capacitor with a dielectric in a form of a wedge in it.
Known data: area A of the plates, permitivity [tex]\epsilon_r[/tex]
The Attempt at a Solution
b is the depth of the capacity, l the length and d the space between the plates.
[tex] \frac{1}{dC}=\frac{1}{dC_1}+\frac{1}{dC_2} [/tex] [tex] =\frac{y}{\epsilon_0\epsilon_r dA}+\frac{d-y}{\epsilon_0 dA}[/tex] [tex]=\frac{1}{\epsilon_r\epsilon_0 dA} (y+\epsilon_r (d-y)) [/tex] [tex]dC = \frac{dA \epsilon_r\epsilon_0}{(1-\epsilon_r)y+\epsilon_r d}[/tex][tex]=\frac{b\epsilon_r\epsilon_0 dx}{(1-\epsilon_r\frac{d}{l} x+\epsilon_r d)} [/tex]
[tex]C=\frac{A\epsilon_r\epsilon_0}{(1-\epsilon_r)d} \ln(\frac{1}{\epsilon_r})[/tex]
[tex]C=\frac{\epsilon_r\epsilon_0 A}{(\epsilon_r-1)d} \ln(\epsilon_r)[/tex]
So I sliced the capacitor in thin parallel capacitors (so the slices orthogonal to the plates of the original capacitor). Those are again two capacitors, one with permitivity epsilon_r, one without.
But if I now slice the capacitor in thin capacitors parallel to the plates of the big capacitor, I get a different solution, which can't be the case.
Where is my fault?
Thanks in advance,
arnno
PS: sorry for my untrained english