- #1
rachelro
- 4
- 0
A teacher leaves out a box of N stickers for children to take home as treats. Children form a queue and look at the box one by one. When a child finds k⩾1 stickers in the box, he or she takes a random number of stickers that is uniformly distributed on {1,2,…,k}.
1- What is the expectation of the number of stickers taken by the second child, as a function of the initial number of stickers N?
2- If E_N denotes the expected number of children who take at least one sticker from the box given that it initially contained N stickers. How can I compute a formula to represent E_N+1 in terms of E_1+⋯+E_N. Also, how E_N can be expressed in terms of k?
1- What is the expectation of the number of stickers taken by the second child, as a function of the initial number of stickers N?
2- If E_N denotes the expected number of children who take at least one sticker from the box given that it initially contained N stickers. How can I compute a formula to represent E_N+1 in terms of E_1+⋯+E_N. Also, how E_N can be expressed in terms of k?