- #1
ozkan12
- 149
- 0
Let (X,d) be a metric space. An operator $T:X\to X$ is said to be quasi nonexpansive if T has at least one fixed point in X and, for each fixed point p, we have
$d\left(Tx,p\right)\le d\left(x,p\right)$ (1)
And also we give a mapping such that
$d\left(Tx,Ty\right)\le2\delta d\left(x,Tx\right)+\delta d\left(x,y\right)$ (2) for all x,y in X. Also $\delta \in [0,1)$.
İn (2) if we take x:= p and y:=x then we get,
$d\left(Tx,p\right)\le\delta d\left(x,p\right)<d\left(x,p\right)$. İn there, p is fixed point of T. (3)
İn (2), İf we take x:= p and y:=x we obtain d(Tx,p)=0, d(x,p)=0...So, How we write (3) ?...
$d\left(Tx,p\right)\le d\left(x,p\right)$ (1)
And also we give a mapping such that
$d\left(Tx,Ty\right)\le2\delta d\left(x,Tx\right)+\delta d\left(x,y\right)$ (2) for all x,y in X. Also $\delta \in [0,1)$.
İn (2) if we take x:= p and y:=x then we get,
$d\left(Tx,p\right)\le\delta d\left(x,p\right)<d\left(x,p\right)$. İn there, p is fixed point of T. (3)
İn (2), İf we take x:= p and y:=x we obtain d(Tx,p)=0, d(x,p)=0...So, How we write (3) ?...