- #1
KatelynO
- 9
- 0
A point on the outside of the axle of a truck has a circular motion that can be modeled by a sine curve. If you measure the distance from the axle's centre to the bottom of the truck, that distance remains constant as long as the truck is on a level piece of road. If the truck goes over a bump, the springs absorb the shock but the truck bounces for a while. A truck is moving so that the axle, which is 6 cm in diameter, rotates at 1 rotation per second. As the truck hits a bump, the spring depresses by 20 cm and continues to depress by 80% of the previous bump as it bounces every half-second.
If the middle of the axle is 30 cm from the bottom of the truck, construct a graph illustrating the distance from a point on the outside of the axle to the bottom of the truck.
What is the equation of the graph?
To find the equation for this question I have to find two equations that meet all of the specifications of this question.
I found the period to be 1 second as the axle rotates once per second, and therefore can be represented by sinx. Then the truck hits a bump which causes the axle to raise 20cm (of a possible 30cm) towards the bottom of the truck, (I'm not sure about this part because it does not specify whether or not the spring then goes the 20cm opposite the bottom of the truck, towards the ground) with a continuous depression of 80% of the previous bump every half second.
f(x) = 20(0.8)^x(sinx)
This is the first time I've dealt with Combining Functions so I'm not very familiar with it, any help would be appreciated. Thank you
If the middle of the axle is 30 cm from the bottom of the truck, construct a graph illustrating the distance from a point on the outside of the axle to the bottom of the truck.
What is the equation of the graph?
To find the equation for this question I have to find two equations that meet all of the specifications of this question.
I found the period to be 1 second as the axle rotates once per second, and therefore can be represented by sinx. Then the truck hits a bump which causes the axle to raise 20cm (of a possible 30cm) towards the bottom of the truck, (I'm not sure about this part because it does not specify whether or not the spring then goes the 20cm opposite the bottom of the truck, towards the ground) with a continuous depression of 80% of the previous bump every half second.
f(x) = 20(0.8)^x(sinx)
This is the first time I've dealt with Combining Functions so I'm not very familiar with it, any help would be appreciated. Thank you