- #1
Enthalpy
- 667
- 4
Hello everybody!
I imagined and prototyped this brake long ago for the deployment mechanisms of a satellite I never built. In essence, it's clean, it can work in vacuum and in a wide temperature range, and it can wait for long without maintenance, so other uses must be possible, like semiconductor, food, optics processing...
It compresses a viscoelastic element and let's it roll to brake the relative movement of two parts, so that an alternate deformation results and dissipates energy. My viscoelastic element was a seal ring and the other parts were cylindrical - but feel free to make them flat or elliptic if it brings anything. Two gentle slopes help a lot inserting the ring. Repetitive operation would demand stoppers, whose shape is simplified on the sketch, as the rolling surface is better smooth right from the slope.
The braking resistance is difficult to predict unless you have a software for viscoelasticity and know the material's properties at varied frequencies, temperatures and stress... Even then, experimental verification remains necessary, so you can just skip the simulation step. The braking resistance increases with compression and scales as the dimensions squared.
The initial orientation of the ring is almost unperceivable, but after hours, the elastomer creeps and makes one position more stable. With the material I had (NBR?) this was important but didn't prevent movement under the expected force. Whether some material can damp at 10Hz but creep little over weeks is unclear.
Varied elastomers are used for seal rings, and all elastomers dampen except natural rubber. Silicone and Viton fit secondary vacuum and dampen a lot over varied temperatures. Creeping and limited friction are a drawback for Viton. The "viscoelastic properties" and "complex shear modulus" (search keywords) depend on the precise material including its molecular weight and cross-linking, which define the relation between temperature, frequency and the complex modulus, so "polybutadiene" or "polyurethane" is too imprecise.
The imaginary part of the shear modulus must increase with frequency over the whole desired temperature range, so the braking force increases with velocity and can stabilize the movement's speed. It's usually given at zero compression, alas.
My rod and tube were of POM-H. Examples of clean materials with great friction are nickel layers, anodization layers on aluminium, titanium, stainless steel, ceramic layers... but most bare metals and plastics seem to suffice.
Two viscoelastic elements in a brake help keep the moving elements parallel.
Marc Schaefer, aka Enthalpy
(Click on the thumbnail to view the sketch full-sized)
I imagined and prototyped this brake long ago for the deployment mechanisms of a satellite I never built. In essence, it's clean, it can work in vacuum and in a wide temperature range, and it can wait for long without maintenance, so other uses must be possible, like semiconductor, food, optics processing...
It compresses a viscoelastic element and let's it roll to brake the relative movement of two parts, so that an alternate deformation results and dissipates energy. My viscoelastic element was a seal ring and the other parts were cylindrical - but feel free to make them flat or elliptic if it brings anything. Two gentle slopes help a lot inserting the ring. Repetitive operation would demand stoppers, whose shape is simplified on the sketch, as the rolling surface is better smooth right from the slope.
The braking resistance is difficult to predict unless you have a software for viscoelasticity and know the material's properties at varied frequencies, temperatures and stress... Even then, experimental verification remains necessary, so you can just skip the simulation step. The braking resistance increases with compression and scales as the dimensions squared.
The initial orientation of the ring is almost unperceivable, but after hours, the elastomer creeps and makes one position more stable. With the material I had (NBR?) this was important but didn't prevent movement under the expected force. Whether some material can damp at 10Hz but creep little over weeks is unclear.
Varied elastomers are used for seal rings, and all elastomers dampen except natural rubber. Silicone and Viton fit secondary vacuum and dampen a lot over varied temperatures. Creeping and limited friction are a drawback for Viton. The "viscoelastic properties" and "complex shear modulus" (search keywords) depend on the precise material including its molecular weight and cross-linking, which define the relation between temperature, frequency and the complex modulus, so "polybutadiene" or "polyurethane" is too imprecise.
The imaginary part of the shear modulus must increase with frequency over the whole desired temperature range, so the braking force increases with velocity and can stabilize the movement's speed. It's usually given at zero compression, alas.
My rod and tube were of POM-H. Examples of clean materials with great friction are nickel layers, anodization layers on aluminium, titanium, stainless steel, ceramic layers... but most bare metals and plastics seem to suffice.
Two viscoelastic elements in a brake help keep the moving elements parallel.
Marc Schaefer, aka Enthalpy
(Click on the thumbnail to view the sketch full-sized)