- #1
NCD135
- 9
- 0
I almost "get" it, but not quite. Can someone help?
Here is my current understanding.
Say you solve the Kronig-Penny model. You find that you get bands of N closely spaced energy levels, with large gaps between them.
Under normal conditions, electrons fill the band to some level (let's say we have a metal, so the electrons only fill part of the band). Half of the electrons have positive wavevector k, while half have negative wavevector -k. Thus, there is no current. Now, if we apply a field, at any given point in space, all of the energy levels shift up or down, according to the potential at that point. Here is where it gets hazy. Let's say we are in 1D, and the electrostatic potential is higher to the left than it is to the right, due to the applied field. Electrons moving to the left can lower their energy by moving to the right. Therefore, if we get a thermal fluctuation (technically the energy levels in the band are still discrete), an electron moving to the left, near the Fermi level, can reduce its energy by moving up into a higher kinetic energy state and moving to the right, thereby lowering its potential energy. Is this accurate? Is there a better way to explain this, because I still struggle with this explanation, which may be completely wrong.
In the case of an insulator, none of this can happen, because there will be no thermal fluctuations larger than the gap
Here is my current understanding.
Say you solve the Kronig-Penny model. You find that you get bands of N closely spaced energy levels, with large gaps between them.
Under normal conditions, electrons fill the band to some level (let's say we have a metal, so the electrons only fill part of the band). Half of the electrons have positive wavevector k, while half have negative wavevector -k. Thus, there is no current. Now, if we apply a field, at any given point in space, all of the energy levels shift up or down, according to the potential at that point. Here is where it gets hazy. Let's say we are in 1D, and the electrostatic potential is higher to the left than it is to the right, due to the applied field. Electrons moving to the left can lower their energy by moving to the right. Therefore, if we get a thermal fluctuation (technically the energy levels in the band are still discrete), an electron moving to the left, near the Fermi level, can reduce its energy by moving up into a higher kinetic energy state and moving to the right, thereby lowering its potential energy. Is this accurate? Is there a better way to explain this, because I still struggle with this explanation, which may be completely wrong.
In the case of an insulator, none of this can happen, because there will be no thermal fluctuations larger than the gap