- #1
ehrenfest
- 2,020
- 1
For a wavefunction given by
[tex]\psi(x,t) = \sum a_n u_n(x) exp(-i E_n T/\hbar) [/tex] how would you show that a change of coordinates x > x + d does not affect the momentum space wavefunction phi(x) by more than a phase change?
You get phi(x) by Fourier transforming psi.
So, I do not see why it would affect psi at all because you are moving the origin d to the left but you are integrating over all pace in the Fourier transform.
[tex]\psi(x,t) = \sum a_n u_n(x) exp(-i E_n T/\hbar) [/tex] how would you show that a change of coordinates x > x + d does not affect the momentum space wavefunction phi(x) by more than a phase change?
You get phi(x) by Fourier transforming psi.
So, I do not see why it would affect psi at all because you are moving the origin d to the left but you are integrating over all pace in the Fourier transform.