- #1
Wledig
- 69
- 1
- Homework Statement
- Consider the decay of a particle of mass M, at rest, into two particles with masses ##m_1## and ##m_2##, both nonzero. With an appropriate choice of axes, the momentum vectors of the final particle can be written: $$p_1 = (E_1,0,0,k)$$ $$p_2 = (E_2,0,0,-k)$$ with ##E_1^2 = k^2 + m_1^2, E_2^2 = k^2 + m_2^2##.
a) Show that ##k = \dfrac{\sqrt{(M^4 -2M^2(m_1^2+m_2^2)+(m_1^2-m_2^2)^2}}{2M} ##
b) Take the limit ##m_2 \rightarrow 0 ## and show that this reproduces the result for the decay into one massive and one massless particle.
c) Find formulae for ##E_1## and ##E_2## in terms of M, m1, m2.
- Relevant Equations
- Energy momentum relation: ##E^2 = p^2 + m^2##
Attempt at solution:
By conservation of momentum: $$P = (M,0,0,0) = p_1 + p_2 = (E_1 + E_2, 0, 0,0)$$ thus
$$ M = E_1 + E_2 = 2k^2 + m_1^2 + m_2^2$$
Now $$E_1^2 - E_2^2 = m_1^2 - m_2^2 = (m_1 + m_2)(m_1-m_2)$$
$$ = M(m_1-m_2) = (2k^2+m_1^2+m_2^2)(m_1-m_2)$$
Isolating k: $$ k = \sqrt{\dfrac{M-m_1^2-m_2^2}{2}}$$
By conservation of momentum: $$P = (M,0,0,0) = p_1 + p_2 = (E_1 + E_2, 0, 0,0)$$ thus
$$ M = E_1 + E_2 = 2k^2 + m_1^2 + m_2^2$$
Now $$E_1^2 - E_2^2 = m_1^2 - m_2^2 = (m_1 + m_2)(m_1-m_2)$$
$$ = M(m_1-m_2) = (2k^2+m_1^2+m_2^2)(m_1-m_2)$$
Isolating k: $$ k = \sqrt{\dfrac{M-m_1^2-m_2^2}{2}}$$