- #1
r4nd0m
- 96
- 1
I'm really stuck with my homework - it seems to be easy, but...
So the first one:
Find the most natural bijection between these two sets:
[tex](X \times Y)^Z , X^Z \times Y^Z [/tex]
The second thing I'm stuck with:
Proof for arbitrary [tex]f: X \rightarrow Y , g: Y \rightarrow Z[/tex] and sets:
[tex]A \subseteq X , B \subseteq Z[/tex] :
[tex](g \circ f)^{-1} (B) = f^{-1}(g^{-1}(B))[/tex]
And the last one:
Let [tex]f: X \rightarrow Y [/tex] be an arbitrary function. Proof that for every [tex]A,B \subseteq X ; C,D \subseteq Y[/tex]:
a) [tex]C \subseteq D \Rightarrow f^{-1}(C) \subseteq f^{-1}(D)[/tex]
b) [tex]f(f^{-1}(C)) \subseteq C[/tex]
So the first one:
Find the most natural bijection between these two sets:
[tex](X \times Y)^Z , X^Z \times Y^Z [/tex]
The second thing I'm stuck with:
Proof for arbitrary [tex]f: X \rightarrow Y , g: Y \rightarrow Z[/tex] and sets:
[tex]A \subseteq X , B \subseteq Z[/tex] :
[tex](g \circ f)^{-1} (B) = f^{-1}(g^{-1}(B))[/tex]
And the last one:
Let [tex]f: X \rightarrow Y [/tex] be an arbitrary function. Proof that for every [tex]A,B \subseteq X ; C,D \subseteq Y[/tex]:
a) [tex]C \subseteq D \Rightarrow f^{-1}(C) \subseteq f^{-1}(D)[/tex]
b) [tex]f(f^{-1}(C)) \subseteq C[/tex]
Last edited: