- #1
diracy
- 20
- 0
Homework Statement
Given a compact set A[itex]\subset[/itex][itex]\Re[/itex][itex]^{n}[/itex] and a point x[itex]\in[/itex][itex]\Re[/itex][itex]^{n}[/itex] define the distance from x to A as the quantity:
d(x, A)=inf({[itex]\left\|[/itex]x-y[itex]\right\|[/itex]: y[itex]\in[/itex]A})
Given two compact sets A, B [itex]\subset[/itex][itex]\Re[/itex][itex]^{n}[/itex], define the Hausdorff distance between them to be:
d(A, B)=max(sup{d(x, B) : x[itex]\in[/itex]A}, sup{d(x, A) : x[itex]\in[/itex]B})
a. For any compact set A, prove that the function f : [itex]\Re[/itex][itex]^{n}[/itex][itex]\rightarrow[/itex][itex]\Re[/itex] given by: f(x)=d(x, A) is continuous.
b. For any two compact sets A, B it's true that: d(A, B)<[itex]\infty[/itex]
c. For any two compact sets A, B it's true that d(A, B)=0 if and only if A=B.
Homework Equations
The Attempt at a Solution
I think I handled part a. I'm just completely lost on b and c. Any help?
Last edited: