- #1
ChrisVer
Gold Member
- 3,378
- 465
Homework Statement
Show that the number density for bosons if T (temperature) >>μ (chemical energy) is:
[itex] n= \frac{ζ(3)}{\pi^{2}} gT^{3}[/itex]
(T>>m too)
Homework Equations
[itex] n= \frac{g}{2 \pi^{2}} \int_{m}^{∞} f(E) (E^{2}-m^{2})^{1/2} EdE[/itex]
[itex] f(E)= \frac{1}{e^{\frac{E-μ}{T}} -1}[/itex]
[itex]ζ(s)= \frac{1}{Γ(s)} \int_{0}^{∞} dx \frac{x^{s-1}}{e^{x}-1}[/itex]
The Attempt at a Solution
I am taking:
[itex] n= \frac{g}{2 \pi^{2}} \int_{m}^{∞} \frac{1}{e^{\frac{E-μ}{T}} -1} (E^{2}-m^{2})^{1/2} EdE[/itex]
Then use μ<<T to drop the part of it in the exponential
[itex] n= \frac{g}{2 \pi^{2}} \int_{m}^{∞} \frac{1}{e^{\frac{E}{T}} -1} (E^{2}-m^{2})^{1/2} EdE[/itex]
If now I make a change of variables, [itex] x= \frac{E}{T}[/itex] I think I'll get something similar to the definition of the zeta function... By this I have:
[itex]x= \frac{E}{T}[/itex],
[itex]dE= T dx[/itex],
[itex] E^{2}= x^{2}T^{2}[/itex]
and [itex]E= x T[/itex]
The integration limits will be: [itex]x_{1}= \frac{m}{T}=0[/itex] and the upper one will be ∞...
[itex] n= \frac{g}{2 \pi^{2}} \int_{0}^{∞} \frac{1}{e^{x} -1} (x^{2}T^{2}-m^{2})^{1/2} xT^{2}dx[/itex]
Now I can see that dropping [itex]m^{2}[/itex] from the square root would give me the desired answer... However I don't know why can I?
alright m<<T, but T also gets multiplied by the variable...
If I'd drop it:
[itex] n= \frac{g}{2 \pi^{2}} \int_{0}^{∞} \frac{1}{e^{x} -1} xT(1-\frac{m^{2}}{x^{2}T^{2}})^{1/2} xT^{2}dx[/itex]
[itex] n= \frac{g}{2 \pi^{2}} \int_{0}^{∞} \frac{1}{e^{x} -1} x^{2} T^{3}dx[/itex]
[itex] n= \frac{g}{2 \pi^{2}} ζ(3) Γ(3) T^{3}dx[/itex]
[itex] Γ(3)= 2[/itex]
and I get the right result...By the assumption I could drop m^2 from the square root...