- #1
Ted123
- 446
- 0
Homework Statement
Compute the integral
[tex]F(x) = \int^x_{-\infty} f(t) \;dt[/tex]
of the linear combination of Dirac delta-functions
[tex]f(t) = -2\delta (t) + \delta (t-1) + \delta (t-2)[/tex].
Express the result analytically (piecewise on a set of intervals) and draw a sketch of the function [tex]F(x)[/tex].
The Attempt at a Solution
Does [tex]F(x) = -2H(x) + H(x-1) + H (x-2)[/tex] where H is the Heaviside function?
I know how to express the Heaviside/Delta functions in terms of 'jumps' in a graph but the actual values could be anything couldn't they? For instance:
[tex]\begin{displaymath} F(x) = \left\{ \begin{array}{lr}
0, & \;x \leq 0\\
-2, & \;0 < x \leq 1\\
-1, & \;1<x\leq 2\\
0, & \;x > 2
\end{array}
\right.[/tex]
and
[tex]\begin{displaymath} F(x) = \left\{ \begin{array}{lr}
1, & \;x \leq 0\\
-1, & \;0 < x \leq 1\\
0, & \;1<x\leq 2\\
1, & \;x > 2
\end{array}
\right.
\end{displaymath}[/tex]
both respresent that linear combination of Heaviside functions don't they?
Last edited by a moderator: