- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hey again! (Blush)
If $p \neq 2$ is a prime and $0 \leq k \leq p-1, \text{ prove that: }$
$$\binom{p-1}{k} \equiv (-1)^k \pmod p$$
I thought that I could calculate $\binom{p-1}{k}k!$ :
$$\binom{p-1}{k}k!=\frac{(p-1)!}{k!(p-(k+1))!}k!=\frac{(p-1)!}{(p-(k+1))!}$$
According to Wilson's theorem, $(p-1)! \equiv -1 \pmod p$..
But...what is equal $\mod p$ to $(p-(k+1))!$ ? (Thinking)
If $p \neq 2$ is a prime and $0 \leq k \leq p-1, \text{ prove that: }$
$$\binom{p-1}{k} \equiv (-1)^k \pmod p$$
I thought that I could calculate $\binom{p-1}{k}k!$ :
$$\binom{p-1}{k}k!=\frac{(p-1)!}{k!(p-(k+1))!}k!=\frac{(p-1)!}{(p-(k+1))!}$$
According to Wilson's theorem, $(p-1)! \equiv -1 \pmod p$..
But...what is equal $\mod p$ to $(p-(k+1))!$ ? (Thinking)
Last edited: